• 제목/요약/키워드: Absolute testing

검색결과 136건 처리시간 0.025초

Microcontroller based split mass resonant sensor for absolute and differential sensing

  • Uma, G.;Umapathy, M.;Kumar, K. Suneel;Suresh, K.;Josephine, A. Maria
    • Smart Structures and Systems
    • /
    • 제5권3호
    • /
    • pp.279-290
    • /
    • 2009
  • Two degrees of freedom resonant systems are employed to improve the resonant property of resonant sensor, as compared to a single degree of freedom resonant system. This paper presents design, development and testing of two degrees of freedom resonant sensor. To measure absolute mass, cantilever shaped two different masses (smaller/absorber mass and bigger/drive mass) with identical resonant frequency are mechanically linked to form 2 - Degree-of-Freedom (DOF) resonator which exhibits higher amplitude of displacement at the smaller mass. The same concept is extended for measuring differential quantity, by having two bigger mass and one smaller mass. The main features of this work are the 3 - DOF resonator for differential detection and the microcontroller based closed loop electronics for resonant sensor with piezoelectric sensing and excitation. The advantage of using microcontroller is that the method can be easily extended for any range of measurand.

A Study on a 3D Free-Hand using Ultrasonic Position System

  • Shin Low-Kok;Park Soo-Hong
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.451-454
    • /
    • 2006
  • Ultrasonic Positioning System (UPS) is an absolute positioning system using ultrasonic waves and has better performance in low price than the other absolute positioning systems. UPS can be further used as pseudo-satellites in the place where GPS is not available. This study aims to evaluate the efficiency and effectiveness of using UPS as a 3D free-hand writing or drawing tool. The process includes the design and testing of VPS as an efficient 3D free-hand writing or drawing tool in the air. The paper will further explain the system architecture of the UPS and how to use GPS as 3D free-hand writing or drawing tool. The efficiency and effectiveness of the system was confirmed by a computer software simulation. The software will further display the result of drawing or writing from the user by graphics. As a result, it is possible to implement UPS as a 3D free-hand writing or drawing tool in the air.

  • PDF

지지 면 조건에 따른 무릎관절의 관절 위치 재현능력 비교 (Comparison of the Joint Position Sense at Knee Joint According to Surface Conditions)

  • 홍영주;원종혁;권오윤
    • 한국전문물리치료학회지
    • /
    • 제14권3호
    • /
    • pp.90-96
    • /
    • 2007
  • The purpose of this study was to compare the joint position sense at the knee joint at 3 different surface conditions by using the active knee joint angle reproduction test in the standing position. Twenty healthy volunteers (10 males and 10 females) age 20~29 years were recruited for this study. The knee joint position senses were assessed at three different surface conditions: on the floor (stable condition), TOGU (soft condition), and seat fit (unstable condition) in a closed kinetic chain. Testing orders were selected randomly. The absolute angle error was defined as the absolute difference between target angles ($30^{\circ}{\sim}45^{\circ}$ knee flexion) and subject perceived angle of the knee flexion. One way ANOVA was used to compare the absolute angle of error among 3 different conditions. The Independent t-test was used to compare the absolute angle of error between male and female. The error angles were significantly different among surface conditions ($1.3^{\circ}{\pm}1.2^{\circ}$ for the floor, $2.1^{\circ}{\pm}0.9^{\circ}$ for the TOGU, and $4.4^{\circ}{\pm}1.8^{\circ}$ for the seat fit, p<.05). There was no significant difference in error angle between male and female. In conclusion, the joint position sense of the knee joint in the closed kinetic chain decreased at unstable surface conditions. The result of this study indicates that surface conditions should be considered when assessing and training the joint position sense of the knee joint in clinical setting.

  • PDF

Measurements of Sub- and Super Harmonic Waves at the Interfaces of Fatigue-Cracked CT Specimen

  • Jeong, Hyun-Jo;Barnard, Dan
    • 비파괴검사학회지
    • /
    • 제31권1호
    • /
    • pp.1-10
    • /
    • 2011
  • Nonlinear harmonic waves generated at cracked interfaces are investigated both experimentally and theoretically. A compact tension specimen is fabricated and the amplitude of transmitted wave is analyzed as a function of position along the fatigued crack surface. In order to measure as many nonlinear harmonic components as possible a broadband Lithium Niobate ($LiNbO_3$) transducers are employed together with a calibration technique for making absolute amplitude measurements with fluid-coupled receiving transducers. Cracked interfaces are shown to generate high acoustic nonlinearities which are manifested as harmonies in the power spectrum of the received signal. The first subharmonic (f/2) and the second harmonic (2f) waves are found to be dominant nonlinear components for an incident toneburst signal of frequency f. To explain the observed nonlinear behavior a partially closed crack is modeled by planar half interfaces that can account for crack parameters such as crack opening displacement and crack surface conditions. The simulation results show reasonable agreements with the experimental results.

Self-Calibration of High Frequency Errors of Test Optics by Arbitrary N-step Rotation

  • Kim, Seung-Woo;Rhee, Hyug-Gyo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권2호
    • /
    • pp.115-123
    • /
    • 2000
  • We propose an extended version of multi-step algorithm of self-calibration of interferometric optical testing instruments. The key idea is to take wavefront measurements with near equal steps in that a slight angular offset is intentionally provided in part rotation. This generalized algorithm adopts least squares technique to determine the true azimuthal positions of part rotation and consequently eliminates calibration errors caused by rotation inaccuracy. In addition, the required numbers of part rotation is greatly reduced when higher order spatial frequency terms are of particular importance.

  • PDF

능동열시험법을 이용한 몰드변압기 진단 (Diagnostic of Cast Resin Using Active Infrared Thermal Testing Method)

  • 임용배;정승천
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.481-484
    • /
    • 2004
  • A form of measured temperature distribution to estimate condition of a electrical apparatus is a absolute reference for condition of the apparatus, time rate of transition, and difference between reference and currently temperature. Because passive thermography which has not injection of external thermal stimulation shows difference of temperature being on surface of a structure and temperature difference between the structure and back ground, the result could apply only to estimation or monitor for condition of terminal relaxation and overload related with temperature rising. However, a thermal flow in active thermography is differently generated by structure and condition of surface and subsurface. This paper presents the nondestructive testing using the properties and includes the results by heat injection and cooling to the apparatus. The buried discontinuity of subsurface could be detected by these techniques.

  • PDF

ARM 920T 프로세서 기반의 초음파 폐활량계 구현 및 감도 향상 연구 (An Implementation of ARM 920T Processor-based Ultrasonic Spirometer and Improvement of Its Sensitivity)

  • 이철원;김영길
    • 비파괴검사학회지
    • /
    • 제25권4호
    • /
    • pp.268-273
    • /
    • 2005
  • 폐활량계(Spirometer)는 호흡하는 가스의 용적 유량의 순간적인 속도를 측정하는 의료기구로 폐의 기능시험과 환자 모니터링에 사용되며 용적 유량 신호를 합친 폐의 절대적인 용적변화를 측정한다. 본 논문에서는 환자를 대상으로 약한 호흡에서도 폐활량 측정이 가능하도록, 관성의 오차 및 압력의 오차에 영향을 거의 받지 않는 초음파 센서를 이용하여 송수신시 초음파 신호를 향상시켰으며, ARM 9207 프로세서를 사용하여 약한 호흡에도 정확하고 빠른 검출이 가능한 시스템을 구현하였다.

The quantitative sensory testing is an efficient objective method for assessment of nerve injury

  • Kim, Young-Kyun;Yun, Pil-Young;Kim, Jong-Hwa;Lee, Ji-Young;Lee, Won
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제37권
    • /
    • pp.13.1-13.7
    • /
    • 2015
  • Background: This study evaluated Somatosensory evoked potentials (SEP), Quantitative sensory testing (QST), and thermography as diagnostic methods for nerve injury. Methods: From 2006 through 2011, 17 patients (mean age: 50.1 years) from ${\bigcirc}{\bigcirc}{\bigcirc}{\bigcirc}$ Hospital who sought care for altered sensation after dental implant treatment were identified. The mean time of objective assessment was 15.2 months after onset. Results: SEP of Inferior alveolar nerve(IAN) was $15.87{\pm}0.87ms$ on the normal side and $16.18{\pm}0.73ms$ on the abnormal side. There was delayed N20 latency on the abnormal side, but the difference was not statistically significant. In QST, the abnormal side showed significantly higher scores of the current perception threshold at 2 KHz, 250 Hz, and 5 Hz. The absolute temperature difference was $0.55^{\circ}C$ without statistically significance. Conclusion: These results indicate that QST is valuable as an objective method for assessment of nerve injury.

Fused Silica와 Al2024-T4의 비선형 파라미터 측정 (Measurement of Ultrasonic Nonlinearity Parameter of Fused Silica and Al2024-T4)

  • 강토;이택규;송성진;김학준
    • 비파괴검사학회지
    • /
    • 제33권1호
    • /
    • pp.14-19
    • /
    • 2013
  • 금속 재료의 비선형 파라미터는 고유한 물성치로서 기본주파수의 음압의 크기($A_1$)과 2차고조파의 음압의 크기($A_2$)을 측정하면 산정할 수 있다. 하지만, 실험적으로 $A_1$$A_2$를 측정하는 것은 매우 복잡한 변환 과정이 필요하기 때문에 현재 많은 연구자들이 비선형 파라미터의 절대값을 측정하지 않고, 전압 변화를 관찰하는 비선형 파라미터의 상대값을 측정하고 있다. 하지만, 비선형 파라미터 상대값으로는 재료의 물성치를 대변할 수가 없기 때문에, 열화도에 따른 시편 측정에만 사용할 수 있는 제약이 있다. 따라서 본 연구에서는 정전용량 측정기법(capacitive detector)보다는 비용이 적게 소모되고 현장 적용이 가능한 압전형 수신기법(piezoelectric detection)을 이용하여 비선형 파라미터의 절대값을 측정하기 위한 시스템을 구축하였다. $A_1^2vsA_2$ 그래프로 시스템의 선형성을 검증하고 시험편인 fused silica와 Al2024-T4에 대한 비선형 파라미터를 측정하였다.

A study of glass and carbon fibers in FRAC utilizing machine learning approach

  • Ankita Upadhya;M. S. Thakur;Nitisha Sharma;Fadi H. Almohammed;Parveen Sihag
    • Advances in materials Research
    • /
    • 제13권1호
    • /
    • pp.63-86
    • /
    • 2024
  • Asphalt concrete (AC), is a mixture of bitumen and aggregates, which is very sensitive in the design of flexible pavement. In this study, the Marshall stability of the glass and carbon fiber bituminous concrete was predicted by using Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and M5P Tree machine learning algorithms. To predict the Marshall stability, nine inputs parameters i.e., Bitumen, Glass and Carbon fibers mixed in 100:0, 75:25, 50:50, 25:75, 0:100 percentage (designated as 100GF:0CF, 75GF:25CF, 50GF:50 CF, 25GF:75CF, 0GF:100CF), Bitumen grade (VG), Fiber length (FL), and Fiber diameter (FD) were utilized from the experimental and literary data. Seven statistical indices i.e., coefficient of correlation (CC), mean absolute error (MAE), root mean squared error (RMSE), relative absolute error (RAE), root relative squared error (RRSE), Scattering index (SI), and BIAS were applied to assess the effectiveness of the developed models. According to the performance evaluation results, Artificial neural network (ANN) was outperforming among other models with CC values as 0.9147 and 0.8648, MAE values as 1.3757 and 1.978, RMSE values as 1.843 and 2.6951, RAE values as 39.88 and 49.31, RRSE values as 40.62 and 50.50, SI values as 0.1379 and 0.2027 and BIAS value as -0.1 290 and -0.2357 in training and testing stage respectively. The Taylor diagram (testing stage) also confirmed that the ANN-based model outperforms the other models. Results of sensitivity analysis showed that the fiber length is the most influential in all nine input parameters whereas the fiber combination of 25GF:75CF was the most effective among all the fiber mixes in Marshall stability.