• Title/Summary/Keyword: Absolute nodal coordinate formulation

Search Result 27, Processing Time 0.024 seconds

Computation of Dynamic Stress in Flexible Multi-body Dynamics Using Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 탄성 다물체동역학 해석에서의 동응력 이력 계산에 관한 연구)

  • 서종휘;정일호;박태원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.114-121
    • /
    • 2004
  • Recently, the finite element absolute nodal coordinate formulation (ANCF) was developed for the large deformation analysis of flexible bodies in multi-body dynamics. This formulation is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. In this paper, a computation method of dynamic stress in flexible multi-body dynamics using absolute nodal coordinate formulation is proposed. Numerical examples, based on an Euler-Bernoulli beam theory, are shown to verify the efficiency of the proposed method. This method can be applied for predicting the fatigue life of a mechanical system. Moreover, this study demonstrates that structural and multi-body dynamic models can be unified in one numerical system.

Study on the Frame Structure Modeling of the Beam Element Formulated by Absolute Nodal Coordinate Approach

  • Takahashi Yoshitaka;Shimizu Nobuyuki;Suzuki Kohei
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.283-291
    • /
    • 2005
  • Accurate seismic analyses of large deformable moving structures are still unsolved problems in the field of earthquake engineering. In order to analyze these problems, the nonlinear finite element method formulated by the absolute nodal coordinate approach is noticed. Because, this formulation has several advantages over the standard procedures on mass matrix, elastic forces and damping forces in the case of large displacement problems. But, it has not been fully studied to build frame structure models by using beam elements in the absolute nodal coordinate formulation. In this paper, we propose the connecting method of the beam elements formulated by the absolute nodal coordinate. The coordinate transformation matrix of this element is introduced into the frame structure. This beam element has the characteristic that the mass matrix and bending stiffiness matrix are constant even if in the case of large displacement problems, and this characteristic is being kept after the transformation. In order to verify the proposed method, we show the numerical simulation results of frame structures for a vibration problem and a large displacement problem.

Study on the Dynamic Analysis Method using the Modal Coordinates and the Absolute Nodal Coordinates (모드좌표와 절대절점좌표를 혼용한 동역학 해석기법에 관한 연구)

  • Sohn, Jeon-Hyun;Yoo, Wan-Suk
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1730-1735
    • /
    • 2003
  • In this paper, the absolute nodal coordinate formulation was introduced to describe the large deformation problems. And also, the modal coordinates were employed to represent the small elastic deformation. A new hybrid formulation was developed to combine the modal coordinates and the absolute nodal coordinates. A spherical joint and the DOT1 constraint were developed to carry out the numerical simulation of mechanical systems with kinematic joints. A beam example was suggested to show the new formulation. The simulation results using the modal coordinates and the absolute nodal coordinates show a good agreement to the experiments.

  • PDF

Simulation of a Rotating Chain with an Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 회전체인의 시뮬레이션)

  • Yoo, Wan-Suk;Dmitrochenko, Oleg;Pogorelov, Dmitry
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.649-654
    • /
    • 2004
  • A physically simple but mathematically cumbrous problem of rotating heavy chain with one fixed top point is studied. Nonlinear equation of its two-dimensional shapes of relative equilibrium is obtained and solved numerically. A linear case of small displacements is analyzed in terms of Bessel functions. The qualitative and quantitative behavior of the problem is discussed with the help of bifurcation diagram. Dynamics of the two-dimensional model near the equilibrium positions is studied with the help of simulation using the absolute nodal coordinate formulation (ANCF). The equilibriums are found instable, and the reason of instability is explained using a variational principle.

  • PDF

The Development of a Sliding Joint for Very Flexible Multibody Dynamics (탄성 대변형 다물체동역학을 위한 슬라이딩조인트 개발)

  • Seo Jong-Hwi;Jung Il-Ho;Sugiyama Hiroyuki;Shabana Ahmed A.;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1123-1131
    • /
    • 2005
  • In this paper, a formulation for a spatial sliding joint, which a general multibody can move along a very flexible cable, is derived using absolute nodal coordinates and non-generalized coordinate. The large deformable motion of a spatial cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. And the non-generalized coordinate, which is neither related to the inertia forces nor external forces, is used to describe an arbitrary position along the centerline of a very flexible cable. In the constraint equation for the sliding joint, since three constraint equations are imposed and one non-generalized coordinate is introduced, one constraint equation is systematically eliminated. Therefore, there are two independent Lagrange multipliers in the final system equations of motion associated with the sliding joint. The development of this sliding joint is important to analyze many mechanical systems such as pulley systems and pantograph/catenary systems for high speed-trains.

Flexible Multibody Dynamic Analysis of the Wiper System for Automotives (자동차 와이퍼 시스템의 유연 다물체 동역학 해석)

  • Jung, Sung-Pil;Park, Tae-Won;Cheong, Won-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.175-181
    • /
    • 2010
  • This paper presents the dynamic analysis method for estimating the performance of flat-type blades in wiper systems. The blade has nonlinear characteristics since the rubber is a hyper-elastic material. Thus, modal coordinate and absolute nodal coordinate formulations were used to describe the dynamic characteristic of the blade. The blade was structurally analyzed to find the bending characteristics of the cross section of the blade. According to the analysis results, the blade section is divided into three deformation bodies: rigid, small, and large. For the small deformation body, the modal coordinate formulation is used, while the absolute nodal coordinate formulation is used for the large deformation body. To verify the dynamic analysis result, an experiment was performed. The simulation and experiment results were compared to verify the flexible multi-body dynamic model.

Physical Experiments for Large Deformation Problems

  • Yoo, Wan-Suk;Lee, Jeong-Han;Sohn, Jeong-Hyun;Park, Su-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.705-710
    • /
    • 2003
  • Many papers have studied computer simulations of elastic bodies undergoing large deflections and large deformations. But there have not been many attempts to check the validity of the numerical formulations because the simulation results could not be matched without correct input data such as material properties and damping effects. In this paper, these values are obtained from real experiment with a high-speed camera and a data acquisition system. The simulation results with the absolute nodal coordinate formulation (ANCF) are compared with the results of real experiments. Two examples, a thin cantilever beam and a thin plate, are studied to verify whether the simulation results are well matched to experimental results.

  • PDF

Matching of Physical Experiments and Multibody Dynamic Simulation for Large Deformation Problems

  • Yoo, Wan-Suk;Lee, Jeong-Han;Sohn, Jeong-Hyun;Park, Su-Jin;Oleg Dmitrochenko;Dmitri Pogorelov
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.742-752
    • /
    • 2004
  • Many papers have studied computer simulations of elastic bodies undergoing large deflections and large deformations. But there have not been many attempts to check the validity of the numerical formulations because the simulation results could not be matched without correct input data such as material properties and damping effects. In this paper, these values are obtained from real experiment with a high-speed camera and a data acquisition system. The simulation results with the absolute nodal coordinate formulation (ANCF) are compared with the results of real experiments. Two examples, a thin cantilevers beam and a thin plate, are studied to verify whether the simulation results are well matched to experimental results.

Dynamics modeling of a semi-submersible autonomous underwater vehicle with a towfish towed by a cable

  • Park, Jinmo;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.409-425
    • /
    • 2015
  • In this paper, we employ a dynamics modeling method for investigating a multi-body dynamics system of semi-submersible autonomous underwater vehicles consisting of a towing vehicle operated near the water surface, a tow cable, and a towfish. The towfish, which is towed by a marine cable for the purposes of exploration or mine hunting, is modeled with a Six-Degree-of-Freedom (6-DOF) equation of motion that reflects its hydrodynamics characteristics. The towing cable, which can experience large displacements and deformations, is modeled using an absolute nodal coordinate formulation. To reflect the hydrodynamic characteristics of the cable during motion, the hydrodynamic force due to added mass and the drag force are imposed. To verify the completeness of the modeling, a few simple numerical simulations were conducted, and the results confirm the physical plausibility of the model.