• Title/Summary/Keyword: Abrupt pn Junction

Search Result 2, Processing Time 0.019 seconds

Analytical Model of Breakdown Voltages for Abrupt pn Junctions in III-V Binary Semiconductors (III-V족 반도체에서 계단형 pn 접합의 해석적 항복전압 모델)

  • 정용성
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.1-9
    • /
    • 2004
  • Analytical expressions for breakdown voltages of abrupt pn junction in GaP, GaAs and InP of III-V binary semiconductors was induced. Getting analytical breakdown voltage, effective ionization coefficients were extracted using ionization coefficient parameters for each materials. The result of analytical breakdown voltages followed by ionization integral agrees well with numerical and experimental results within 10% in error.

A study on I-V characteristics in JBS rectifiers according to PN junction structures (JBS(Junction Barrier-controlled Schottky)정류기의 PN접합구조에 따른 I-V 특성에 관한 연구)

  • 안병목;정원채
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.1
    • /
    • pp.13-20
    • /
    • 2000
  • In this paper, we demonstrated an analytical description method of forward votage drop and reverse leakage current of the junction barrier controlled schottky rectifier with linearly graded junction and abrupt junction models. In this case, the vertical depths of device are 1[${\mu}{\textrm}{m}$] and 2[${\mu}{\textrm}{m}$], respectively. Through ion implantation and annealing process, we obtain the data of lateral and depth from implanted 2-dimensional profiles. Also we applied these data to models that indicate the change of depletion each on linearly-graded and abrupt juction as the forward and revers bias. After applied depletion changes to electric characteristics of JBS rectifiers, we calculated the forward I-V, the reverse leakage current and temperatures vs. power dissipations according to each junction. When we compared the rectifier with calculated and measured data, from the calculated results, forward votage drop with linearly graded junction is lower than that of abrupt junction and reverse leakage current with linearly graded junction is lower(≒1$\times$10\ulcorner times) than that of abrupt junction. Also, the power dissipations according to different juction depth(1[${\mu}{\textrm}{m}$], 2[${\mu}{\textrm}{m}$]) of device are calculated. Seeing the calculated results, we confirmed it from analytic model that the rectifier with linearly graded junction retained a low power dissipation up to 600[$^{\circ}C$] in comparison with the rectifier with abrupt junction.

  • PDF