• Title/Summary/Keyword: Abrasive powder

Search Result 100, Processing Time 0.022 seconds

Development of a New Process for Welding a WC Layer to the Round Surface of a Plain Carbon Steel (초경접합 신공법 개발)

  • 박우진;김기열;이범주;조정환;박채규
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.257-262
    • /
    • 1999
  • The economic loss arisen from the abrasion wear have been increasing at every industrial field. To reduce the economic loss we developed a new process, which is named MAHa process(Metallic Adhesives for HArdening). MAHa process is a process to weld tungsten carbide(WC) to the surface of a plain carbon steel so that it may stay longer under the severe abrasive environment. The depth of the WC layer ranges from 0.5 mm to 5 m. Compared with the conventional technology, arc-augmented welding which bonds WC on the flat surface only, MAHa process has the merits that it can make a robust WC layer on the round or wave- shaped surface also. How to turn the WC powder into a flexible mat is the key technology of the MAHa process. We invented new polymer materials to accomplish such a goal and both the MAHa process and the invented materials were applied for patents. For the application, the inner wall of elbow of Concrete Pump Truck(CPT) was maharized(MAHa process-treated) and the new WC layer on the inner wall was made successfully. The elbow was equipped to a CPT.

  • PDF

AN EXPERIMFNENTAL STUDY ON THE SURFACE ROUGHNESS OF ACID ETCHING ENAMEL SURFACE IN HUMAN TEETH (산부식처리(酸腐蝕處理) 치아법랑질(齒牙琺瑯質) 표면(表面)의 조도(粗度)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Lee, Eun-Goo
    • Restorative Dentistry and Endodontics
    • /
    • v.5 no.1
    • /
    • pp.13-18
    • /
    • 1979
  • The purpose of this study was to measure the roughness on the acid -etching surface. The etching agents of three-kinds composite resins were used to etch the tooth surface. Newly extracted I5-anterior teeth were invested with self-curing acrylic resin, and the labial surface was exposed. The exposed labial side was polished with abrasive papers and finally polished on polishing machine with zinc oxide powder. After the teeth were polished, the specimens were washed by water and dried by air. Surface roughness tester, Taylor-Habson's Taly Surf-10, (Fig-1) was used to measure roughness of this unetched tooth surface. And that, the specimens were divided into three groups. The first group was etched with Restodent etchant, the second group was etched with Nuva-system etchant, and Hi-pol etching agent was used in the third group. And the surface roughness tester was used to measure roughness of the etching teeth surface. The results obtained were as follows. 1. The roughness of acid-etched enamel were increased $2{\mu}m$ to $6{\mu}m$. 2. Hi-pol etchant produced the smoothest surface($2.3{\mu}m$). 3. Restodent etchant($3.8{\mu}m$) and Nuva-system etchant($3.7{\mu}m$) produced rougher surface than Hi-pol.

  • PDF

The XPS and SEM Evaluation of Various Technique for Cleansing and Decontamination of The Rough Surface Titanium Implants (수종의 방법으로 임프란트 표면 처치후 표면의 형태 및 성분 변화 분석에 관한 연구)

  • Kim, Sun-bong;Yim, Sung-Bin;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.4
    • /
    • pp.749-763
    • /
    • 2001
  • Osseointegrated titanium implants have become an integral therapy for the replacement of teeth lost. For dental implant materials, titanium, hydroxyapatite and alumina oxide have been used, which of them, titanium implants are in wide use today. Titanium is known for its high corrosion resistance and biocompatability, because of the high stability of oxide layer mainly consists of $TiO_2$. With the development of peri-implantitis, the implant surface is changed in surface topography and element composition. None of the treatments for cleaning and detoxification of implant surface is efficient to remove surface contamination from contaminated titanium implants to such extent that the original surface elemental composition. In this sights, the purpose of this study was to evaluate rough surface titanium implants by means of scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS) with respect to surface appearance and surface elemental composition. Moreover, it was also the aim to get the base for treatments of peri-implantitis. For the SEM and XPS study, rough surface titanium models were fabricated for control group. Six experimental groups were evaluated: 1) long-time room exposure, 2 ) air-powder abrasive cleaning for 1min, 3) burnishing in citric acid(pH1) for 1min, 4) burnishing in citric acid for 3min, 5) burnishing in tetracycline for 1min, 6) burnishing in tetracycline for 3min. All experimental treatments were followed by 1min of rinsing with distilled water. The results were as follows: 1. SEM observations of all experimental groups showed that any changes in surface topography were not detected when compared with control group. (750 X magnification) 2. XPS analysis showed that in all experimental groups, titanium and oxygen were increased and carbon was decreased, when compared with control group. 3. XPS analysis showed that the level of titanium, oxygen and carbon in the experimental group 3(citric acid treatment for 1min, followed by 1min of distilled water irrigation) reached to the level of control group. 4. XPS analysis showed that significant differences were not detected between the experimental group 1 and the other experimental groups except of experimental group 3. The Ti. level of experimental group 2, airpowder abrasive treatment for lmin followed by 1min of saline irrigation, was lower than the Ti. level of tetracycline treated groups, experimental group 5 and 6. From the result of this study, it may be concluded that the 1min of citric acid treatment followed by same time of rinsing with distilled water gave the best results from elemental points of view, and can be used safely to treat peri-implantitis.

  • PDF

Surface Smoothing of Blasted Glass Micro-Channels Using Abrasive Waterjet (워터젯을 이용한 블라스팅 유리 마이크로 채널의 표면거칠기 개선)

  • Son, Sung-Gyun;Han, Sol-Yi;Sung, In-Ha;Kim, Wook-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1159-1165
    • /
    • 2013
  • Powder blasting, which is an efficient micromachining method for glass, silicon, and ceramics, has a critical disadvantage in that the surface finish is poor owing to the brittle fracture of materials. Low-pressure waterjet machining can be applied to smoothen the rough surface inside the blasted structure. In this study, the surface roughness and sectional dimension of micro-channels are observed during the repetitive application of a waterjet to blasted micro-channels. The asperities and subsurface cracks created by blasting are removed by waterjet machining. Along with the surface roughness, it is found that the sectional dimension increases and the edges of the finished micro-channel become slightly round. Finally, a microfluidic chip is machined by the blasting-waterjet process and a transparent microfluidic channel is obtained efficiently.

AN ELECTROCHEMICAL STUDY ON SURFACE FINISH OF DENTAL AMALGAM (아말감의 표면연마에 관한 전기화학적 연구)

  • Suk, Chang-In;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.2
    • /
    • pp.18-32
    • /
    • 1991
  • The purpose of this study was to observe characteristic properties of amalgam through the polarization curves and SEM images from 4 type amalgams (Amalcap, Shofu spherical. Dispersalloy and Tytin) with 3 different surface finish procedures (polishing, burnishing and carving) by using the potentiostats (EG & GPARC) and SEM (Jeol JSM-35). After each amalgam alloy and Hg was triturated as the direction of the manufacturer by means of mechanical amalgamator (Samki), the triturated mass was inserted into the cylndrical metal mold which was 12 mm in diameter and 10 mm in height and was pressed with $100kg/cm^2$. 4 specimens of each type amalgam were burnished with egg burnisher and another 4 specimens of each type amalgam were carved with Hollenback carver. Above 8 specimens and remaining untreated 4 specimens were stored at room temperature for about 7 days. Untreated 4 specimens of each type amalgam were polished with abrasive papers (Deer) from #400 to #1200 and finally on the polishing cloth with $0.5{\mu}m$ and $0.06{\mu}m$ $Al_2O_3 $ powder suspended water. Anodic polarization measurements was employed to compare the corrosion behaviours of the amalgams in 0.9% saline solution at $37^{\circ}C$. The open circuit potential was determined after 30 minutes immersion of specimen in electrolyte. The scan rate was 1 mV/sec and the surface area of amalgam exposed to the solution was $0.64cm^2$ for each specimen. All the potentials reported are with respect to a saturated calomel electrode (SCE). SEM images of each specimen were taken after + 800 mV (SCE) polarization. The results were as follows: 1. The corrosion potential of high copper amalgam was more anodic than that of low copper amalgam. 2. The polished amalgam were more resistant to corrosion than any other burnished and carved amalgam. 3. In the case of polishing, current density of high copper amalgam was lower than that of low copper amalgam.

  • PDF

Analysis of surface form change after performing prophylaxis procedure on implant surface using various oral hygiene instruments (다양한 구강위생기구를 이용하여 임플란트 표면의 Prophylaxis 시행시 표면형태의 변화분석)

  • Lee, Sun-Goo;Lim, Sung-Bin;Chung, Chin-Hyung;Kwon, Sang-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.1
    • /
    • pp.1-17
    • /
    • 2004
  • It is improtant that performing prophylaxis procedure on an infected implant surface in order to treat peri-implantitis should not change the surface roughness and composition, so that the surface can be recovered to almost same condition as initial implant surface. This thesis, therefore, studied an effect of various oral hygiene instrument on implant surface. A surface roughness measurement instrument and an infection electron microscope were used to observe a change on surface. The purpose of this study was to obtain a clinical guidelines during implant care and peri-implantitis treatment. The result were as follows 1. Ra values (surface roughness value) at experimental group 1, group 2, and group 5 were increased significantly as compared with comparison group(p<0.05). 2. When compared experimental group 1 with each experimental groups at which prohylaxis procedure was performed, mean values of Ra at experimental group 2, group 3, group 6, and group 7 were decreased significantly(p<0.05). 3. Mean value of Ra was lowest at experimental group 2, and highest at experimental group 2, and highest at experimental group 5. 4. Analysis of SEM showed that was significant surface change at experimental group 2, group 3, group 4, group 5, and group 6 as compared with comparison group(X1000). 5. Analysis fo EDX showed that a quantity of Ti on surface for experimental group 6 was very similar to that for comparison group. In conclusion, air-powder abrasive and citric acid, plastic instrument are safe methods to use for performing prophylaxis procedure on implant care or for cleaning and sterilization process on treatment of peri-implantitis, based on the result that those method did not affect implant surface roughness and Ti composition.

Long-Term Thermal Conductivity Prediction of Polyurethane Foam Applying Precision Mass Spectrometer for Cell Gas Analysis (정밀질량분석기를 활용한 우레탄폼의 장기열전도도 예측을 위한 분석기법)

  • Kim, Jin-Seok;Chun, Jong-Han;Lee, Jin-Bok;Lee, Hyo-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.679-686
    • /
    • 2010
  • A proprietary device is adopted to break out the membrane of cell in the rigid polyurethane foam. As it is known, the membrane of cell is hardly tearing-off thoroughly in a mechanical way due to both its elastic characteristic and micro sized pores. In this study, a novel experimental approach is introduced to burst out all gases inside the cells of the rigid polyurethane foam by abrasively grinding micro-cells completely into fine powder. The biggest advantage of this approach is to be capable of releasing all gases out from the cell even in the micro pores. As clearly reflected from the repeatability, the accuracy of the result is highly improved and high confidence in the data sets as well. For the measurements of not only gas composition but partial pressure for each gas simultaneously as well, a precision gas mass spectrometer is used in-line directly to the abrasive grinding device. To control the starting point of the polyurethane foam, all samples were prepared on site in the laboratory. Manufactured time is one of the most critical factors in characterization of cell gas composition because it is known that one of gas composition, especially, carbon dioxide, is diffused out dramatically in a short period of time as soon as it is foamed.

Decontamination methods to restore the biocompatibility of contaminated titanium surfaces

  • Jin, Seong-Ho;Lee, Eun-Mi;Park, Jun-Beom;Kim, Kack-Kyun;Ko, Youngkyung
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.3
    • /
    • pp.193-204
    • /
    • 2019
  • Purpose: The reaction of cells to a titanium implant depends on the surface characteristics of the implant which are affected by decontamination. The aim of this study was to evaluate the cytocompatibility of titanium disks treated with various decontamination methods, using salivary bacterial contamination with dental pellicle formation as an in vitro model. Methods: Sand-blasted and acid-etched (SA) titanium disks were used. Three control groups (pristine SA disks [SA group]; salivary pellicle-coated SA disks [pellicle group]; and biofilm-coated, untreated SA disks [NT group]) were not subjected to any decontamination treatments. Decontamination of the biofilm-coated disks was performed by 14 methods, including ultrasonic instruments, rotating instruments, an air-powder abrasive system, a laser, and chemical agents. MG63 cells were cultured in the presence of the treated disks. Cell proliferation assays were performed on days 2 and 5 of cell culture, and cell morphology was analyzed by immunofluorescence and scanning electron microscopy (SEM). A vascular endothelial growth factor (VEGF) assay was performed on day 5 of culture. Results: The cell proliferation assay revealed that all decontaminated disks, except for the 2 groups treated using a plastic tip, showed significantly less cell proliferation than the SA group. The immunofluorescence and SEM analyses revealed that most groups showed comparable cell density, with the exception of the NT group, in which the cell density was lower and bacterial residue was observed. Furthermore, the cells grown with tetracycline-treated titanium disks showed significantly lower VEGF production than those in the SA group. Conclusions: None of the decontamination methods resulted in cytocompatibility similar to that of pristine SA titanium. However, many methods caused improvement in the biocompatibility of the titanium disks in comparison with the biofilm-coated, untreated titanium disks. This suggests that decontamination is indispensable for the treatment of peri-implantitis, even if the original biocompatibility cannot be restored.

Density and Water Absorption Characteristics of Artificial Lightweight Aggregates containing Stone-Dust and Bottom Ash Using Different Flux (폐석분 및 바텀애시를 사용한 인공경량골재의 융제(Flux) 종류에 따른 밀도 및 흡수율 특성)

  • Han, Min-Cheol;Shin, Jae-Kyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.49-55
    • /
    • 2012
  • In this paper, the physical properties of lightweight aggregate such as density and water absorption according to addition ratio and type of flux were investigated. When using $Na_2CO_3$ as flux of lightweight aggregate, burnability was available at low burning temperature and water absorption increased. And as increasing addition ratio of $CaCO_3$, NaOH, $Fe_2O_3$, absorption decreased and $CaCO_3$, NaOH, $Fe_2O_3$ were considered improper to use flux of lightweight aggregate because of high dried density. $Na_2SO_4$ was proper to use flux of lightweight aggregate due to dried density $1.35{\sim}1.50g/cm^3$ and lower absorption. When using glass abrasive sludge as flux of lightweight aggregate, dried density and water absorption were in the range of $1.45{\sim}1.55g/cm^3$ and 9~12% respectively. It was indicated that as increasing addition ratio of blast furnace slag powder, density increased whereas absorption decreased. In use of oxidizing slag as flux, artificial lightweight aggregate which have dried density $1.46g/cm^3$, water absorption 8,5 % can be manufactured at 10 % of addition ratio.

  • PDF

The SEM and SPM Study on the Change of Machined Titanium Implant Surface following Various Laser Treatments (수종의 레이저로 임프란트 표면 처리 시 표면 형태의 변화에 대한 주사전자 및 주사탐침 현미경적 연구)

  • Kim, In-Kyung;Chung, Chin-Hyung;Lim, Sung-Bin
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.2
    • /
    • pp.451-463
    • /
    • 2001
  • Following the extensive use of implant, the incidence of peri-implantitis increases. Guided bone regeneration has been used for the optimal treatment of this disease. Because implant surface was contaminated with plaque and calculus, cleaning and detoxification were needed for the reosseointegration when guided bone regeneration was performed. Various mechanical and chemical methods have been used for cleaning and detoxification of implant surface, air-powder abrasive and oversaturated citrate were known to be most effective among these methods. However, these methods were incomplete because these could not thoroughly remove bacteria of implant surface, moreover deformed implant surface. Recent studies for detoxification of the implant surface using laser were going on, $CO_2$ laser and Soft Diode laser were known to be effective among these methods. The purpose of this study was to obtain clinical guide by application these laser to implant surface. 15 experimental machined pure titanium cylinder models were fabricated. The $CO_2$ laser treatment under dry, wet and hydrogen peroxide condition or the Soft Diode laser treatment under Toluidine blue O solution condition was performed on the each of models. Each groups were examined with SPM and SEM to know whether their surface was changed. The results were as follows : 1. Surface roughness and surface form weren't changed when $CO_2$ laser was usedunder dry condition(P>0.05). 2. Surface roughness and surface form weren't changed when $CO_2$ laser was used under wet condition(P>0.05). 3. Surface roughness and surface form weren't changed when $CO_2$ laser was used under hydrogen peroxide condition(P>0.05). 4. Surface roughness and surface form weren't changed when Soft Diode laser was used under toluidine blue O solution condition(P>0.05). From the result of this study, it may be concluded that the $CO_2$ laser having relatively safe pulse mode and the Soft Diode laser used with photosensitizer can be used safely to treat peri-implantitis.

  • PDF