• 제목/요약/키워드: Abrasive diamond wheel

검색결과 23건 처리시간 0.021초

초경합금 연삭용 비트리파이드 다이아몬드숫돌의 개발 (Development of Vitrified Diamond Wheel for Grinding Tungsten Carbide)

  • 이재우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.185-188
    • /
    • 2002
  • An abrasive vitreous bonded solid mass having a vitrified abrasive structure comprising diamond grains which are held by an in inorganic bonding agent, the vitrified diamond wheel is impregnated with a composition which comprises a thermosetting synthetic resin and a surfactant. The vitrified diamond wheel is manufactured by preparing the composition including the resin and the surfactant, impregnating the abrasive structure with the composition, and curing the composition. The diamond wheel newly developed showed excellent performance in grinding carbide.

  • PDF

금형재료의 정밀연삭을 위한 다기공 다이아몬드 숫돌의 개발 (Development of Multi-Porous Diamond Wheel for Smooth and Mirror Finishing of Die Materials)

  • 허성중
    • 기술사
    • /
    • 제30권6호
    • /
    • pp.144-152
    • /
    • 1997
  • Development of diamond wheel with fine grains and multi-pore structures were newely attempted to be studied in this paper. Wheels, that are employed for the smooth and mirrow finishing of die materials such as tungsten carbide alloy using tool and die materials, must have both performances to remove tool marks efficiently and to contact elastically with curved surfaces. Diamond abrasive grains were bonded firmly by a melamine to prevent the decrease of machining efficiency due to grain sinking within the bond materials. Also, highly foamed structures were developed to increase the flexibility of the wheel, and to induce active self-sharpening by increasing contact pressure between the wheel and work sufaces. In this paper, melamine-bonded diamond wheels are trial manufactured, then the forming method of wheels are explained.

  • PDF

An experimental study on the picosecond laser dressing of bronze-bonded diamond wheels

  • Wang, Yanyi;Chen, Genyu;Hu, Bang;Zhou, Wei
    • Advances in nano research
    • /
    • 제12권6호
    • /
    • pp.583-592
    • /
    • 2022
  • In this paper, a pulsed picosecond laser dressing method for bronze-bonded diamond wheel is studied systematically and comprehensively. The picosecond laser pulse ablation experiment is carried out, and the ablation thresholds of bronze-bonded and diamond abrasive particle are measured respectively. The results indicate that the single-pulse ablation thresholds of bronze-bonded are 0.89J/cm2, 0.24J/cm2 during strong/weak ablation stages. And the multi-pulse ablation thresholds of diamond abrasive particle are 1.69J/cm2, 0.49J/cm2 during strong/weak ablation stages. Obviously, diamond grains have less thermal damage during the process of gentle ablation. The diamond grains of the grinding wheel surface are graphitized during laser dressing. The bronze-bonded is relatively smooth and organizational stability, and the diamond grits have suitable prominent height, which are beneficial to maintain the good grinding performance of dressed bronze-bonded diamond grinding wheels.

Sr 페라이트의 총형연삭특성 (Form grinding characteristics of Sr ferrite)

  • 김성청;이재우
    • 한국정밀공학회지
    • /
    • 제14권3호
    • /
    • pp.21-27
    • /
    • 1997
  • This paper aims to clarify the effects of grinding conditions in form grinding of Sr-ferrite with the electro-plated diamond wheel. The main conclusions obtained were as follows. (1) The flexural strength and surface roughness of ferrite became the best at the peripheral wheel speed of 1700 m/min. (2) In the case of the depth of cut larger than 0.4mm, crack layers is induced in the ground surface, and the fracture type of chips exhibits slight ductile mode in the depth of cut smaller than 0.2mm. (3) Whe the depth of cut exceeds 0.6mm, the wheel life becomes extremely severe due to the large chipping and brack- age in the diamond grains. However, at the depth of cut .leq. 0.05mm, the diamond grain shows abrasive wear. (4) The decrease of flexural strength and the increase of surface roughness is in proportion to the increase of the feed rate. (5) Most effective nozzle setting angles with various delivery conditions of the grinding fluid, such as nozzle position .PHI. , flow rate Q, etc., were made clear.

  • PDF

적층 다이아몬드 숫돌로 연삭된 초경합금의 표면거칠기 특성 (Surface Roughness Characteristics of Cemented Carbide Ground by Laminated Diamond Wheel)

  • 김강
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.47-53
    • /
    • 2003
  • It was already proven experimentally that the laminated grinding wheel is superior to the general grinding wheel in the productivity of grinding. However, it can't be guaranteed when the workpiece material is cemented carbide. Because of its extreme hardness, the grinding wheels made up of super-abrasives are used for grinding it. So, to investigate the performance in extremely hard materials grinding using super-abrasive grinding wheels, the surface roughness characteristics of cemented carbide ground by the laminated diamond wheels are studied experimentally. Through this study, it is found that the similar surface roughness characteristics, those were found in the studies on the laminated aluminum oxide wheels, are still available.

유리 재료의 헬리컬 스캔 연삭 조건 실험 (Experiments on the Grinding Conditions for Helical Scan Grinding of a Glass Material)

  • 이대욱;오창진;이응석;김옥현;김성청
    • 한국정밀공학회지
    • /
    • 제18권9호
    • /
    • pp.165-170
    • /
    • 2001
  • In normal grinding abrasive particles of a grinding wheel rotate on planes parallel to the direction of workpiece fred. which may induce continued scratch lines on ground surface as the workpiece feeds. Instead in helical scan grinding the planes make an angle, called a helical angle, with the feeding direction. Thus scratch lines produced by abrasive particles per one revolution are discontinued which implies that the generation of scratch lines are suppressed by the helical scan grinding. In this study some experimental works have been done on the helical scan grinding of glass to find the effects of grinding conditions on the surface roughness and estimate the optimal grinding conditions. The helical angle, fred rate, material removal rate and the wheel speed are taken as factors for three kinds of grinding wheels i.e., coarse(#140 mesh), medium(#400) and fine(#800) diamond wheels. The experiments are scheduled by Taguchi technique and ANOVA has been carried out for the interpretation of the results. As a result of this study effects of the factors are verified quantitatively showing that the major factors are changed according to the wheel's mesh size and the helical angle is one of the influencing factors on the surface quality.

  • PDF

Surface Grinding of Tungsten Carbide for High Quality Unign Diamond Wheel

  • Seoung-Jung Heo
    • 한국생산제조학회지
    • /
    • 제4권3호
    • /
    • pp.12-24
    • /
    • 1995
  • Various surface grinding experiments using resin bonded diamond abrasive wheels are carried out for tungsten carbide materials in order to minimize the damage on the ground surface and to purse the precise dimension compared to conventional grinding machine. When grinding quality is constant, theoretical grinding effect is changed according to the speed of workpiece. Accordingly, grinding forces, which are Fn, Ft, were analyzed for the machining processes of tungsten-carbide material to obtain optimum grinding conditions. Brief investigation is carried out to decrease the dressing efficiency of resinoid bonded diamond grinding wheel to grind tungsten-carbide. Truing is also carried out to provide a desired shape on a wheel or to correct a dulled profile. High quality in dimensional accuracy and surface are often required as a structural components, therefore 3-points bending test is carried out to check machining damage on the ground surface layer, which in one of sintered brittle material. From this experimental study, some useful machining data and information to determine proper machining condition for grinding of tungsten-carbide materials are obtained.

  • PDF

페리이트의 총형 연삭에서 전착 다이아몬드 연삭숫돌의 최적 연삭조건 (Optimum Grinding Condition for Electroplated Diamond Wheel in Form Grinding of Ferrite)

  • 김성청;이재우;김관우;한상욱;황선희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.29-33
    • /
    • 1996
  • This paper aims to clatify the potimum grinding condition for the electroplated diamond wheel in form grinding of Sr-ferrite. The main conclusions obtained were as follows. (1) The flexural strength and surface roughness of ferrite became the highest at the peripheral wheel speed of 1700m/min. (2) In the case of depth of cut larger than 0.4mm, crack layers is induced in the ground surface, the fracture type of chips exhibits slight ductile mode in the depth of cut smaller than 0.2mm. (3) When the depth of cut exceed 0.6mm, the tool life becomes extermely short due to large chipping and brackage. However, at the depth of cut .geq. 0.05mm, the diamond grain shows abrasive wear. (4) The flexural strength and surface roughness increases in proportion to the feed rate.

  • PDF

MLCC 절단용 초경합금 칼날의 나노표면 가공 기술 (Nano-surface Machining Technology of Tungsten Carbide Blade for MLCC Cutting Process)

  • 강병욱;신건휘;곽태수
    • 한국기계가공학회지
    • /
    • 제18권11호
    • /
    • pp.41-46
    • /
    • 2019
  • The purpose of this study is to examine and propose a high quality blade manufacturing method by applying ELID grinding technology to machining the tungsten carbide blade edge for MLCC sheet cutting. In this study, experiments are performed according to the abrasive type of grinding wheel, grinding method and grinding direction using the non-stop continuous dressing ELID grinding technology. By comparing and analyzing the chipping phenomena and surface roughness of both the blade grinding surface and the processed surface, a method for machining the tungsten carbide blade for cutting MLCC sheet is proposed. From the analysis of the surface roughness and chipping phenomena, it is confirmed that the use of diamond abrasive is advantageous for the blade machining. In addition, it succeeds in the machining of $6{\mu}m$ fine blade without any chipping, by using the grinding wheel #4000 with the diamond abrasive.

WC-Co의 고품위 평면 연삭가공 (Surface grinding of WC-Co with high quality)

  • 허성중;강재훈;김원일
    • 한국정밀공학회지
    • /
    • 제11권5호
    • /
    • pp.42-55
    • /
    • 1994
  • Presently, abrasive processing is on eof several methods for cutting and grinding brittle materials, and high quality in dimensional accuracy and surface roughness are often required as a structural components, therefore most of them has to be ground. In manufacturing of tungsten-carbide components, grinding by diamond wheel is usually adopted in order to provide configurational and dimensional accuracy to the components. The present study proposes the experi- mental research of optimum condition to the high quality surface grinding of the WC-Co material using diamond abrasive wheel in order to minimize the damage on the ground surface and to pursue the precise dimension by conventional grinding machine. Brief investigation is carried out to decrease the dressing is constant, theoretical grinding effect such as machining precision is changed according to the speed of workpiece. Accordingly, normal and tangential grinding forces, which are Fn, Ft were analyzed for the machining processes of WC-Co material to obtain optimum grinding conditions, 3-point bending test is carried out to check machining damage on the ground surface layer, which is one of sintered brittle materials.

  • PDF