• 제목/요약/키워드: Abrasive(SiC)

검색결과 71건 처리시간 0.019초

치과용 Ti-Xwt%Cu 합금의 연삭성 (Grindability of Ti-Xwt%Cu Alloys for Dental Applications)

  • 안재석
    • 대한치과기공학회지
    • /
    • 제31권4호
    • /
    • pp.31-36
    • /
    • 2009
  • This study evaluated the grindability of series of Ti-Cu alloys in order to develop a Ti alloy with better grindability than commercially pure titanium(CP Ti). Experimental Ti-Xwt%Cu alloys(X=2, 5, 10) were made in an argon-arc melting furnace. Slabs of experimental alloys were ground using a SiC abrasive wheel on an electric handpiece at circumferential speed(15000, 30000rpm) by applying a force(250, 300gr). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 2 minutes. Data were compared to those for CP Ti and Ti-6wt%Al-4wt%V alloy. From results, It was observed that the grindability of Ti-Cu alloys increased with an increase in the Cu concentration compared to CP Ti, particularly the 10wt%Cu alloy exhibited the highest grindability at all speeds. By alloying with Cu, the Ti exhibited better grindability at high speed. The continuous precipitation of $Ti_2Cu$ among the ${\alpha}$-matrix grains made this material less ductile and facilitated more effective grinding because small segments more readily formed. The Ti-10wt%Cu alloy has a great potential for use as a dental machining alloy.

  • PDF

연마재함유 휠브러쉬에 의한 볼스크류 연마기술 (Surface Finishing of Ballscrew by Abrasive Wheel Brush)

  • 이응숙;김재구;황경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.1049-1052
    • /
    • 1997
  • The pupose of this study on the surface finishing is to examine the performance of brushing as a means of reducing the surface roughness of the precision theaded shafts in ball screw assemblies. Ball screws provide superior performance compared to other types of screw feeds in terms of static and dynamic rolling resistance,backlash,and wear characteristics. The Reduction of the surface roughness of the lead shaft in ball screw assembiles is essential for precision movement,high speed/low noise tracel, and for low wear/long life. To reduce machine dependent errors that would influence the surface roughness compared with other lapping or polishing techniques,experiments will be performed using special wire brushes to polish precision ground shafts. The best results were obtained using the Al /sab 2/O /sab3/ brushes, with the Al /sab 2/O /sab3/ #500 grit brush producing a surface finish of approximately 0.7 .mu.m, and the Al /sab 2/O /sab3/ #600 grit producing a surface finish of approximately 0.8 .mu.m. Both of these results were produced at the highest wheel polishing speed of 3520 rpm. The SiC #500 brush produced a surface roughness of approximately 1 .mu.m at 3520 rpm.

  • PDF

아연의 가열온도와 표면 거칠기가 원적외선 복사량에 미치는 영향 (Effects of Temperature and Surface Roughness of Zinc on the Far-Infrared Ray Emissivity)

  • 장충근;임진석;김원사
    • 한국광물학회지
    • /
    • 제12권2호
    • /
    • pp.96-100
    • /
    • 1999
  • Effects of surface conditions (temperature and roughness) of test specimens, when measuring emissive power of far-infrared ray, have been investigated using FT-IR spectrometer. Element metal zinc (Zn) was selected in this study as representative specimen of materials consisting of simple element. The zinc specimens were heated to four temperatures, i.e., 333K, 353K, .373K, and also their surface was finished with SiC abrasive papers of 100, 220, 360, 400, 600, 800, and 1000 mesh in size. The results shows that the emissive power (W/㎡) of the far-infrared ray increases with temperature for a given roughness and its relationship may be expressed by the following equations: Yη=1.0=0.142$.$T-0.937 for η=1.0, and Yη=10=0.016$.$T-1.286 for η=10. The emissive power is also known to increase with surface roughness for a given temperature. Their relationship can be represented by the following equations: YT=313K=0.234$.$$\ell$n(η)+3.53, at 313K, YT=353K=0.234$.$$\ell$n(η)+4.02 at 353K and YT=393K=0.243$.$$\ell$n(η)+4.62 at 393K.

  • PDF

Cytotoxicity and biocompatibility of high mol% yttria containing zirconia

  • Gulsan Ara Sathi Kazi;Ryo Yamagiwa
    • Restorative Dentistry and Endodontics
    • /
    • 제45권4호
    • /
    • pp.52.1-52.11
    • /
    • 2020
  • Objectives: Yttria-stabilized tetragonal phase zirconia has been used as a dental restorative material for over a decade. While it is still the strongest and toughest ceramic, its translucency remains as a significant drawback. To overcome this, stabilizing the translucency zirconia to a significant cubic crystalline phase by increasing the yttria content to more than 8 mol% (8YTZP). However, the biocompatibility of a high amount of yttria is still an important topic that needs to be investigated. Materials and Methods: Commercially available 8YTZP plates were used. To enhance cell adhesion, proliferation, and differentiation, the surface of the 8YTZP is sequentially polished with a SiC-coated abrasive paper and surface coating with type I collagen. Fibroblast-like cells L929 used for cell adherence and cell proliferation analysis, and mouse bone marrow-derived mesenchymal stem cells (BMSC) used for cell differentiation analysis. Results: The results revealed that all samples, regardless of the surface treatment, are hydrophilic and showed a strong affinity for water. Even the cell culture results indicate that simple surface polishing and coating can affect cellular behavior by enhancing cell adhesion and proliferation. Both L929 cells and BMSC were nicely adhered to and proliferated in all conditions. Conclusions: The results demonstrate the biocompatibility of the cubic phase zirconia with 8 mol% yttria and suggest that yttria with a higher zirconia content are not toxic to the cells, support a strong adhesion of cells on their surfaces, and promote cell proliferation and differentiation. All these confirm its potential use in tissue engineering.

셰일에 대한 SILRES BS OH 100 강화제 적용연구 (A Study on the Application of SILRES BS OH 100 Consolidants for Shale)

  • 이상진;김진형;도진영
    • 보존과학회지
    • /
    • 제21권
    • /
    • pp.33-40
    • /
    • 2007
  • 본 연구에서는 약해진 암석을 강화시키는데 사용되고 있는 에틸 실리케이트계 강화제인 SILRES BS OH 100를 대상으로 셰일계 석재에 대한 강화 제 적용을 연구하였다. SILRES BS OH 100는 상온에서 공기 중의 수분과 반응하여 액체 상태의 졸에서 고체 상태의 겔로 변화하였으며, 생성된 겔은 X-선 회절 분석 결과 비결정질의 고체 상태임을 알 수 있었다. 약 $30^{\circ}C$의 항온을 유지하며 시간의 경과에 따른 시차열중량분석 결과 공기중에 노출되면서부터 305분까지 급격하게 중량이 감소되었는데, 이것은 SILRES BS OH 100의 반응생성물인 에탄올이 증발하면서 실라놀($Si(OH)_4$) 입자가 생성되기 때문인 것으로 판단된다. SILRES BS OH 100을 처리한 세계 암석의 미세구조 관찰을 통해 겔화된 고체상태의 강화제가 광물 입자와 입자 사이를 채우면서 결합하고 있는 것을 확인할 수 있었다. SILRES BS OH 100를 처리한 세일계 암석 시편은 처리전과 비교하여 모세관물흡수계수는 48.7%가 감소되었으며, 마모 강도가 증진되는 효과를 나타내었다.

  • PDF

용탕단조법에 의한 AC8A/$Al_2O_3$ 복합재료의 기계적 성질에 관한 연구 (A Study on the Mechanical Properties of AC8A/$Al_2O_3$ Composites.)

  • 김기배;김경민;조순형;윤의박
    • 한국주조공학회지
    • /
    • 제11권6호
    • /
    • pp.475-481
    • /
    • 1991
  • In this study the fabrication technology and mechanical properties of AC8A/$Al_2O_3$ Composites by squeeze casting process were investigated to develope for application as the piston materials that require good friction, wear resistance, and thermal stability. AC8A/$Al_2O_3$ composistes without a porosity and the break of preform were fabricated at the melt temperature of $740^{\circ}C$, the preform temperature of $500^{\circ}C$, and mold temperature of $400^{\circ}C$ under the applied pressure of $1200kg/cm^2$ as the results of the observation of microstructures. As the results of this study, the tensile strength of AC8A/$Al_2O_3$ composites was not increased linearly with $Al_2O_3$ volume fraction and so it seemed not to agree with the rule of mixture, which had been used often in metal matrix composite. Also the tensile strength after thermal fatigue test was little different from that before the test. Consequently it was thought that AC8A/$Al_2O_3$ composites fabricated under our experimental conditions had a good thermal stability and subsequently a good interface bonding. Wear rate(i.e., volume loss per unit sliding distance) of AC8A/$Al_2O_3$ composites was decreased with $Al_2O_3$ volume fraction and the sliding speed at both room temperature and $250^{\circ}C$ and so there was a good correlation between wear rate and hardness. Also the wear rate of AC/8A20% $Al_2O_3$ composities was obtained the value of $1.65cm^3/cm$ at sliding speed of 1.14m/sec as compared with about $3.0\;{\times}10^{-8}cm^3/cm$ hyereutectie Al-Si alloy(Al-16%Si-2%Cu-1%Fe-1%Ni), which applied presently for piston materials. The wear behavior of $Al_2O_3$ composites was observed to a type of abrasive wear by the SEM view of wear surface.

  • PDF

태양전지 Wafering Slurry 재생기술 개발에 관한 연구 (A Development of Recycling Technology of Solar Cell Wafering Slurry)

  • 나원식;이재하
    • 한국항행학회논문지
    • /
    • 제14권3호
    • /
    • pp.426-431
    • /
    • 2010
  • 태양전지용 웨이퍼 제조공정에 있어 Slurry의 가격 비중은 약 68% 정도로 매우 큰 비중을 차지하고 있기 때문에, 제조비용 절감측면과 Wafering 원가혁신 및 산업폐기물 처리비용 절감효과, 환경오염 방지를 위해 Slurry의 순환 사용은 필수적이다. 기존 Slurry를 재생하는 방식은 물리적인 원심분리(데칸터) 방식을 이용한 방법을 사용하고 있으나 미분(微粉)이 남아 있어 재생품질에 한계가 있고, 대부분 액체, 100% 오일과 분리되지 않은 상태로 재생된다. 이 상태를 건조시키는 경우도 순도가 많이 떨어진다. 본 논문에서는 원심분리(데칸터) 방식과 케미컬 방식을 함께 사용하여, 태양전지 Wafering 공정에서 필수적인 Slurry를 재생함에 있어, 원심분리에 의한 재생품질의 한계를 극복할 수 있는 재생기술을 개발하였고, Slurry 재생에 대한 Total Solution을 제공하여 성능을 향상시키고 재생 회수율을 높였다.

치과주조용 Ti-X%Zr(X=10,20,40)합금의 연삭성 (Grindability of Cast Ti-X%Zr(X=10,20,40) Alloys for Dental Applications)

  • 정종현;노형록
    • 대한치과기공학회지
    • /
    • 제33권4호
    • /
    • pp.263-270
    • /
    • 2011
  • Purpose: The grindability of binary Ti-X%Zr(X=10,20,40) alloys in order to develop a Ti alloy with better machinability than unalloyed titanium has been evaluated. Methods: Experimental Ti-Zr alloys were made in an argon-arc melting furnace. Slabs of experimental alloys were ground using a SiC abrasive wheel on an electric handpiece at circumferential speeds(12000,18000,25000 or 30000rpm) by applying a force(200gr). Grinding rate was evaluated by measuring the amount of metal volume removed after grinding for 1 minute and the volume ratio of metal removed compared to the wheel material lost, which was calculated from the diameter loss (grinding ratio). Experimental datas were compared to those for cp Ti(commercially pure titanium) and Ti-6%Al-4%V alloy were used controls. Results: It was observed that the grindability of Ti-Zr alloys increased with an increase in the Zr concentration. More, they are higher than cp Ti, particularly the Ti-20%Zr alloy exhibited the highest grindability at all circumferential speeds. There was significant difference in the grinding rate and grinding ratio between Ti-20%Zr alloy and cp Ti at any speed(p<0.05). Conclusion: By alloying with Zr, the Ti exhibited better grindability at all circumferential speeds. the Ti-20%Zr alloy has a great potential for use as a dental machining alloy.

치과용 Ti-10%Zr-X%Cr(X=0,1,3)합금의 연삭성 (Grindability of Ti-10%Zr-X%Cr(X=0,1,3) Alloys for Dental Applications)

  • 정종현;신재우
    • 대한치과기공학회지
    • /
    • 제35권4호
    • /
    • pp.295-302
    • /
    • 2013
  • Purpose: The grindability of Ti-10%Zr-X%Cr(X=0,1,3) alloys in order to develop Ti alloys for dental applications with better machinability than unalloyed titanium has been evaluated. Methods: Experimental Ti-10%Zr-X%Cr(X=0,1,3) alloys were made in an argon-arc melting furnace. Slabs of experimental alloys were ground using a SiC abrasive wheel on an electric handpiece at one of the four rotational speeds of the wheel (12000, 18000, 25000 or 30000rpm) by applying a force(100gf). Grindability was evaluated by measuring the amount of metal volume removed per minute(grinding rate) and the volume ratio of metal removed compared to the wheel material lost, which was calculated from the diameter loss (grinding ratio). Experimental datas were compared the results with those of cp-Ti(commercially pure titanium) Results: It was observed that the grindability of Ti-10%Zr-X%Cr(X=0,1,3) alloys increased with an increase in the Cr concentration. More, they are higher than cp-Ti, particularly the Ti-10%Zr-3%Cr alloy exhibited the highest grindability at all rotational speeds except 12000rpm. There was significant difference in the grinding rate and grinding ratio between Ti-10%Zr-3%Cr alloy and cp-Ti at all rotational speeds(p<0.05). Conclusion: The Ti-10%Zr-3%Cr alloy exhibited better grindability at high rotational speeds, great potential for use as a dental machining alloy.

다이아몬드 코팅 와이어로 가공된 태양전지용 실리콘 웨이퍼의 표면 특성에 관한 연구 (A study on the surface characteristics of diamond wire-sawn silicon wafer for photovoltaic application)

  • 이경희
    • 한국결정성장학회지
    • /
    • 제21권6호
    • /
    • pp.225-229
    • /
    • 2011
  • 현재 결정질 태양전지에서 웨이퍼 가공은 대부분 슬러리 분사 방식의 다중 와이어를 이용한 방법이 사용되고 있다. 이와 같은 슬러리 분사 방식의 웨이퍼 가공은 가공속도가 낮아 생산성이 떨어지는 단점이 있을 뿐만 아니라 금속 재질의 와이어와 실리콘 블록의 직접적인 마찰에 의하여 웨이퍼 표면의 금속 불순물에 의한 오염이 발생되는 단점이 있다. 뿐만 아니라 와이어와 실리콘 블록간의 직접적인 마찰로 인하여 와이어가 빨리 마모되며, 이로 인하여 일회성의 와이어를 사용하게 되면서 제조원가는 상승하게 된다. 반면에 다이아몬드 입자가 코팅된 와이어를 이용하여 실리콘 웨이퍼를 가공하게 되면, 가공속도가 기존 슬러리 분사방식보다 빠르며, 공정진행에 따른 와이어의 마모율이 적어 와이어의 재사용에 의한 제조원가 절감이 가능하다. 따라서 이와 같은 다이아몬드 입자가 코팅된 와이어를 이용하여 가공하는 기술은 슬러리 분사방식에 비하여 더 효율적이라 할 수 있다. 본 연구에서는 슬러리 분사방식으로 가공된 웨이퍼와 다이아몬드 코팅된 와이어로 가공된 웨이퍼의 표면특성에 대하여 분석하고 셀 공정에 영향을 미치는 것에 대하여 설명하고자 한다. 또한, 다이아몬드 와이어로 가공된 웨이퍼를 활용하기 위한 셀 공정의 개선방향에 대하여 제안하고자 한다.