• Title/Summary/Keyword: Abrasion volume

Search Result 39, Processing Time 0.031 seconds

Permeability and abrasion resistance of concretes containing high volume fine fly ash and palm oil fuel ash

  • Homwuttiwong, S.;Jaturapitakkul, C.;Chindaprasirt, P.
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.349-360
    • /
    • 2012
  • In this paper, compressive strength, water permeability and abrasion resistance of concretes containing high volume fine fly ash (FFA) and fine ground palm oil fuel ash (GPA) were studied. Portland cement type I was replaced with FFA and GPA at dosages up to 70% by weight of binder. Ground river sand (GRS) was also used to replace Portland cement in order to indicate the level of filler effect. Results indicated that FFA was slightly more reactive than GPA. The replacement of 40-70% of FFA produced concretes with compressive strength, permeability and abrasion resistance comparable to those of normal concretes. The incorporation of GPA slightly reduced the performances of concretes as compared to those of FFA concretes. The reduction of Portland cement was partly compensated by the increase in pozzolanic activity of the fine fly ash and palm oil fuel ash and thus enabled the large replacement levels.

Effect of Volume Fraction of Cr Carbide Phase on the Abrasive Wear Behavior of the High Cr White Iron Harcfacing Weld Deposits (고크롬 철계 오버레이용접층의 긁힘마모거동에 미치는 크롬탄화물 양의 영향)

  • 백응률
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.125-133
    • /
    • 1998
  • The effect of volume fraction of Cr carbide phase (Cr CVF) on the low stress abrasion resistance in the chromium-carbide-type high Cr white iron hardfacing weld deposits has been investigated. In order to examine Cr CVF, a series of alloys with varying Cr CVF by changing chromium and carbon contents and the ratio of Cr/C were employed. The alloys were deposited once or twice on a mild steel plate using the self-shielding flux cored arc welding process. The low stress abrasion resistance of the alloys against sands was measured by the Dry Sand/Rubber Wheel Abrasion Test (RWAT). It was shown that hardness and abrasion resistance increased with increasing Cr CVF within the whole test range (Cr CVF : 0.23-0.64). Both primary Cr carbide and eutectic Cr carbide were particularly effective in resisting wear due to their high hardness.

  • PDF

A Study on Third Body Abrasion in the Small Clearance Region Adjacent to the Contact Area

  • Kim, Hyung-Kyu;Lee, Young-Ho;Heo, Sung-Pil;Jung, Youn-Ho
    • KSTLE International Journal
    • /
    • v.4 no.1
    • /
    • pp.8-13
    • /
    • 2003
  • Abrasion in fretting wear mechanism is studied experimentally with the specimens of two different shapes of spacer grid spring and fuel tubes of a nuclear fuel. Reciprocating sliding wear test has been carried out in the environment of air and water at room temperature. Especially, third body abrasion is referred to for explaining the wear region expansion found during the slip displacement increase with constant normal contact farce. It is found that the expansion behaviour depends on the contact shape. The small clearance between the tube and spring seems to be the preferable region of the wear particle accumulation, which causes third body abrasion of the non-contact area. Even in water environment the third body abrasion occurs apparently. Since the abrasion on the clearance contributes wear volume, the influence of the contact shape on the severity of third body abrasion should be considered to improve the grid spring design in the point of restraining wear damage of a nuclear fuel.

Evaluation on Filter/Adsorber Granular Activated Carbon using in Advanced Drinking Water Treatment: Abrasion number, Floater, Water-soluble ash, and Adsorption characteristics (고도정수처리용 Filter/Adsorber Granular Activated Carbon 특성 평가: 마모지수, floater, water-soluble ash 및 흡착특성 평가)

  • Park, Byeong-Joo;Do, Si-Hyun;Kim, Tae-Yang;Hong, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.77-85
    • /
    • 2016
  • The characteristics of filter/adsorber granular activated carbon (F/A GAC) were investigated by measuring various parameters, which include surface area, pore volume, abrasion number, floater, and water-soluble ash. The correlation between parameters was also evaluated. Moreover, rapid small-scale column test (RSSCT) was conducted for adsorption characteristics. Thirteen F/A GAC were tested, and the average values of abrasion number and water-soluble ash were 88.9 and 0.15%, respectively. F/A GAC with the larger external surface area and greater mesopore volume had the lower abrasion number, which indicated that it was worn out relatively easily. Water-soluble ash of coconut-based GAC (about 2.6%) was greater than that of coal-based GAC (less than 1%), and the pH of solution was increased with GAC, which had the higher water-soluble ash. On the other hand, floater of thirteen F/A GAC was divided as two groups, which one group had relatively higher floater (2.7~3.5%) and the other group had lower floater (approximately 0.5%). The results of RSSCT indicated that coconut-based GAC (i.e. relatively higher water-soluble ash) had less adsorption capacity. Moreover, adsorption capacity of coal-based GAC with larger surface area and greater mesopore volume was superior to others.

Effect of Silica Fume and Slag on Compressive Strength and Abrasion Resistance of HVFA Concrete

  • Rashad, Alaa M.;Seleem, Hosam El-Din H.;Shaheen, Amr F.
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.69-81
    • /
    • 2014
  • In this study, portland cement (PC) has been partially replaced with a Class F fly ash (FA) at level of 70 % to produce high-volume FA (HVFA) concrete (F70). F70 was modified by replacing FA at levels of 10 and 20 % with silica fume (SF) and ground granulated blast-furnace slag (GGBS) and their equally combinations. All HVFA concrete types were compared to PC concrete. After curing for 7, 28, 90 and 180 days the specimens were tested in compression and abrasion. The various decomposition phases formed were identified using X-ray diffraction. The morphology of the formed hydrates was studied using scanning electron microscopy. The results indicated higher abrasion resistance of HVFA concrete blended with either SF or equally combinations of SF and GGBS, whilst lower abrasion resistance was noted in HVFA blended with GGBS.

Abrasion Resistance and Surface Hardness of Gold Plated Carbonized Board (도금처리 탄화보드의 내마모성 및 표면경도)

  • Hwang, Sung-Wook;Park, Sang-Bum;Lee, Won-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.4
    • /
    • pp.435-439
    • /
    • 2012
  • This research was performed to evaluate surface performance of gold plated carbonized board. After the carbonization at $850^{\circ}C$, volume, weight, and density decreased by 65.25%, 71.35% and 17.64%, respectively. Abrasion resistance and surface hardness of non-carbonized board exhibited the highest values of 0.093 g/100 revolution and 26.43 N/$mm^2$, respectively. Gold plated carbonized board showed intermediate values, 0.587 g/100 revolution of abrasion resistance and 24.35 N/$mm^2$ of surface hardness. Carbonized board showed the lowest values, 0.863 g of abrasion resistance and 21.50 N/$mm^2$, of surface hardness. These results were thought to reflect propertional relationship between abrasion resistance and surface hardness. Abrasion resistance and surface hardness of carbonized board appeared able to be improved by surface treatment such as plating.

  • PDF

Abrasion Resistant Paver Production Utilising Modern Brickmaking Technology: Possibilities and Difficulties

  • Ozucelik, Nazmi
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.368-371
    • /
    • 1998
  • The work aims to evaluate the necessary physical properties of Abrasion Resistant Pavers designed for high volume pedestrian and road vehicle traffic and their influence on the selection of raw materials and ceramic processes. The pavers' specifications such as high strength and ware resistance demand a careful clay preparation, slow drying, slow firing and a balanced chemical and mineralogical composition. Therefore, developing abrasion Resistant Pavers in existing modern brickmaking plants, which are designed primarily for making bricks and pavers for domestic applications, has become a challenge for manufacturers and ceramic professionals. The significance of quality control and research and development in the production of these high class pavers is also emphasised in this work through the investigation of a paver that exhibits shrinkage cracking.

  • PDF

Low streee Abrasive Wer mechanism of the Iron/Chromium Hardfacing Alloy (저응력하의 철/크롬 올버레이합금의 긁힘마모기구)

  • 백응률
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.73-83
    • /
    • 1998
  • This study investigated the relationships between the microstructure and the wear resistance of hardfaced iron/chromium alloys to examine the low stress abrasive wear mechanism. The effects of volume fraction of reinforcing phases(chromium carbide and eutectic phase) were studied. The alloys were deposited once or twice on a mild steel plate using a self-shielding flux cored arc welding process. The low stress abrasion resistance of he alloys against dry sands was measured by the Dry Sand/Ruber Wheel Abrasion Tester (RWAT). The wear resistance of hypoeutectic alloys, below 0.36 volume fraction of chromium-carbide phase (VFC), behaved as Equal Pressure Mode (EPM) for the inverse rule of mixture whereas the wear resistance of hypereutectic alloys, above 0.36 VFC, represented Equal Wear Mode (EWM) for the linear rule of mixture.

  • PDF

Erosion Resistance Evaluation of High-Strength SCC (고강도 고유동 콘크리트의 침식 저항성)

  • Choi, Sok-Hwan;Lee, Jae-Moon;Han, Man-Yop;Ha, Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.205-208
    • /
    • 2006
  • Damage of hydraulic concrete structures by the abrasion and erosion process is very severe and it indicates that the necessity of considering the influence of this process while designing concrete mixtures. Abrasion wear of concrete in hydraulic structures is caused by the movement of particles, water-borne debris. The resistance against erosion for high-strength self-consolidating concrete(SCC) was examined in this paper. A newly designed testing method is presented in order to quantitatively estimate the erosion of concrete. It was shown that loss of volume in abraded concrete can be explained as function of material parameters such as the amount of fly ash and blast furnace slag. Those admixtures have been widely used to reduce heat of hydration and improve resistance against sulfate attack. The results of current study can be used as a guideline in selecting the composition of concrete exposed to abrasion-wear.

  • PDF