• Title/Summary/Keyword: Abrading electrode technique

Search Result 7, Processing Time 0.029 seconds

Effects of Alloying Elements(Cr, Mo, N) on Repassivation Characteristics of Stainless Steels Studied by the Abrading Electrode Technique and A.C Impedance Spectroscopy (마멸 전극 기법과 교류 임피던스법으로 연구한 스테인리스강의 합금원소(Cr, Mo, N)가 재부동태 특성에 미치는 영향)

  • Ham Dong-Ho;Kim Suk-Won;Lee Jae-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.211-218
    • /
    • 2000
  • The effects of alloying elements, Cr, Mo, and N on repassivation characteristics of stainless steels were investigated by using the abrading electrode technique and a.c impedance spectroscopy. The role of alloying elements on the stability of passive film and their repassivation characteristics were examined using alloy steels such as Fe-Cr, Fe-Cr-Mo, 304, 304LN, 316, and 316LN. The electrochemical characteristics of the passive film were investigated by in-situ d.c. and a.c. electrochemical methods. Localized corrosion resistance is believed to have much to do with the stability and repassivation characteristics of the passive film. The effects of alloying elements on the current transients and repassivation kinetics were systematically examined by using the abrading electrode technique and a.c. impedance spectroscopy. The experimental results were analyzed in order to elucidate the relationship between passive film stability, repassivation characteristics, and alloying elements.

The Kinetics of Anodic Dissolution and Repassivation on 316L Stainless Steel in Borate Buffer Solution Studied by Abrading Electrode Technique

  • Xu, H.S.;Sun, D.B.;Yu, H.Y.;Meng, H.M.
    • Corrosion Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.261-266
    • /
    • 2015
  • The capacity of passive metal to repassivate after film damage determines the development of local corrosion and the resistance to corrosion failures. In this work, the repassivation kinetics of 316L stainless steel (316L SS) was investigated in borate buffer solution (pH 9.1) using a novel abrading electrode technique. The repassivation kinetics was analyzed in terms of the current density flowing from freshly bare 316L SS surface as measured by a potentiostatic method. During the early phase of decay (t < 2 s), according to the Avrami kinetics-based film growth model, the transient current was separated into anodic dissolution ($i_{diss}$) and film formation ($i_{film}$) components and analyzed individually. The film reformation rate and thickness were compared according to applied potential. Anodic dissolution initially dominated the repassivation for a short time, and the amount of dissolution increased with increasing applied potential in the passive region. Film growth at higher potentials occurred more rapidly compared to at lower potentials. Increasing the applied potential from 0 $V_{SCE}$ to 0.8 $V_{SCE}$ resulted in a thicker passive film (0.12 to 0.52 nm). If the oxide monolayer covered the entire bare surface (${\theta}=1$), the electric field strength through the thin passive film reached $1.6{\times}10^7V/cm$.

Repassivation Characteristics of Fe-Cr Steels Using the Abrading Electrode Technique in Aqueous 0.1M $Na_2SO_4+ NaCl$ Solutions (0.1M $Na_2SO_4+ NaCl$ 수용액에서 마멸 전극 기법을 이용한 Fe-Cr강의 재부동태 특성)

  • Ham Dong Ho;Lee Jae Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.195-201
    • /
    • 1999
  • The repassivation characteristics of Fe-Cr steels in deaerated 0.1 M $Na_2SO_4$ solution have been investigated with the variation of Cr content, applied potential and Cl- concentration. In the absence of chloride ion, abrading electrode test showed that, slope -n, of log i=k -n log t, a parameter of repassivation rate, approached to -1, regardless of Cr content but as Cr content increased, repassivation current density decreases with increasing Cr content. A.C. Impedance spectroscopy showed that the charge transfer resistance of passive film became higher as Cr content and applied potential increased. However, in the presence of chloride ion, it was observed that chloride ion suppressed the passive film formation, whose effect became greater with increasing applied potential.

Crevice Corrosion Behavior by Measuring the Potential Inside the Crevice and Repassivation Characteristics of Alloy 600 and Alloy 690 (틈 내 전위측정을 통한 Alloy 600 및 Alloy 690의 틈부식 거동과 재부동태 특성)

  • Oh, Se-Jung;Lee, Jae-Bong
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.2
    • /
    • pp.82-90
    • /
    • 2007
  • Crevice corrosion is the accelerated attack occurred in the occluded cell under a crevice on the metal surface. Crevice corrosion behaviors of nickel-based alloys such as Alloy 600 and Alloy 690 were investigated in acidic solution with different chloride ion concentrations. Tests were carried out using the specially designed crevice cell with a very narrow Luggin capillary assembly to measure the potential inside the crevice. It is believed that crevice corrosion in active/passive system like nickel-based alloys has much to do with the properties of passive film and its repassivation characteristics, investigated by the capacitance measurement and by the abrading electrode technique, respectively. An attempt was made to elucidate the relationship between crevice corrosion behaviors, properties of passive film and its repassivation kinetics. Results showed that repassivation rate parameter $n1{\leq}0.6$ and/or $n2{\leq}0.5$ indicated the possible occurrence of crevice corrosion.