Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.2
/
pp.313-316
/
2022
In this paper, we implement a system that detects abnormalities in the charging data transmitted from the charger during the charging process of electric vehicles and controls them remotely. Using classification algorithms such as logistic regression, KNN, SVM, and decision trees, to do this, an analysis model is created that judges the data received from the charger as normal and abnormal. In addition, a model is created to determine the cause of the abnormality using the existing charging data based on the analysis of the type of charger abnormality. Finally, it is solved using unsupervised learning method to find new patterns of abnormal data.
Journal of Institute of Control, Robotics and Systems
/
v.22
no.9
/
pp.723-732
/
2016
This paper proposes an approach to fused navigation of an unmanned surface vehicle(USV) and to detection of the outlier or interference of global positioning system(GPS). The method fuses available sensor measurements through extended Kalman filter(EKF) to find the location and attitude of the USV. The method uses error covariance of EKF for detection of GPS outlier or interference. When outlier or interference of the GPS is detected, the method excludes GPS data from navigation process. The measurements to be fused for the navigation are GPS, acceleration, angular rate, magnetic field, linear velocity, range and bearing to acoustic beacons. The method is tested through simulated data and measurement data produced through ground navigation. The results show that the method detects GPS outlier or interference as well as the GPS recovery, which frees navigation from the problem of GPS abnormality.
Shin, Dong-Hoon;Baek, Ji-Won;Park, Roy C.;Chung, Kyungyong
Journal of the Korea Convergence Society
/
v.12
no.2
/
pp.1-6
/
2021
In the modern society, traffic problems are occurring as vehicle ownership increases. In particular, the incidence of highway traffic accidents is low, but the fatality rate is high. Therefore, a technology for detecting an abnormality in a vehicle is being studied. Among them, there is a vehicle anomaly detection technology using deep learning. This detects vehicle abnormalities such as a stopped vehicle due to an accident or engine failure. However, if an abnormality occurs on the road, it is possible to quickly respond to the driver's location. In this study, we propose a deep learning-based vehicle anomaly detection using road CCTV data. The proposed method preprocesses the road CCTV data. The pre-processing uses the background extraction algorithm MOG2 to separate the background and the foreground. The foreground refers to a vehicle with displacement, and a vehicle with an abnormality on the road is judged as a background because there is no displacement. The image that the background is extracted detects an object using YOLOv4. It is determined that the vehicle is abnormal.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.15
no.6
/
pp.141-146
/
2015
In order to classify and analyze variously compounded sound and voice signal from FPGA microphone, there are numerous systems to detect abnormality signal, however, they have a lot of problems to implement the abnormality signal detection efficiently and effectively. Therefore, we proposed a method that implements classifying the signal effectively and outputting the detection efficiently based on the algorithm applied FIFO structure (First-in First-out) by using microphone sensor which able to input the sound signal, and statistical variance and coefficient of variation (CV). The result showed 96.3% detection when the experiment was performed more than 100 times with the proposed algorithm applied system.
Journal of the Korean Institute of Intelligent Systems
/
v.13
no.3
/
pp.266-274
/
2003
This paper considers an incremental support vector learning for the abnormality detection problems. One of the most well-known support vector learning methods for abnormality detection is the so-called SVDD(support vector data description), which seeks the strategy of utilizing balls defined on the kernel feature space in order to distinguish a set of normal data from all other possible abnormal objects. The major concern of this paper is to modify the SVDD into the direction of utilizing the relation between the optimal solution and incrementally given training data. After a thorough review about the original SVDD method, this paper establishes an incremental method for finding the optimal solution based on certain observations on the Lagrange dual problems. The applicability of the presented incremental method is illustrated via a design example.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.48
no.5
/
pp.25-30
/
2011
This paper present a method for abnormal traffic behavior, or trajectory, detection in static traffic surveillance camera with user-defined trajectories. The method computes the abnormality of moving object with a trajectory of the object and user-defined trajectories. Because of using user-define based information, the presented method have more accurate and faster performance than models need a learning about normal behaviors. The method also have adaptation process of assigned rule, so it can handle scene variation for more robust performance. The experimental results show that our method can detect abnormal traffic behaviors in various situation.
KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
/
v.5B
no.2
/
pp.103-110
/
2005
Broken rotor bars in induction motors can be detected by monitoring any abnormality of the spectrum amplitudes at certain frequencies in the motor current spectrum. Broken rotor bar fault detection schemes should rely on multiple signatures in order to overcome or reduce the effect of any misinterpretation of the signatures that are obscured by factors such as measurement noises and different load conditions. Multiple Discriminant Analysis (MDA) and Artificial Neural Networks (ANN) provide appropriate environments to develop such fault detection schemes because of their multi-input processing capabilities. This paper describes two fault detection schemes for broken rotor bar fault detection with multiple signature processing, and demonstrates that multiple signature processing is more efficient than single signature processing.
Electrocardiogram (ECG) signal gives a clear indication whether the heart is at a healthy status or not as the early notification of a cardiac problem in the heart could save the patient's life. Several methods were launched to clarify how to diagnose the abnormality over the ECG signal waves. However, some of them face the problem of lack of accuracy at diagnosis phase of their work. In this research, we present an accurate and successive method for the diagnosis of abnormality through Discrete Wavelet Transform (DWT), QRS complex detection and Support Vector Machines (SVM) classification with overall accuracy rate 95.26%. DWT Refers to sampling any kind of discrete wavelet transform, while SVM is known as a model with related learning algorithm, which is based on supervised learning that perform regression analysis and classification over the data sample. We have tested the ECG signals for 10 patients from different file formats collected from PhysioNet database to observe accuracy level for each patient who needs ECG data to be processed. The results will be presented, in terms of accuracy that ranged from 92.1% to 97.6% and diagnosis status that is classified as either normal or abnormal factors.
Kim, Kwang-Myung;Choi, Hwang;Oh, Sun-Kyung;Moon, Shin-Yong
Clinical and Experimental Reproductive Medicine
/
v.13
no.2
/
pp.161-174
/
1986
A chromosomal study was performed in a total of 162 urological patients during past 2$2{\frac{1}{2}}$ years (Feb. 1984 - Aug. 1986). Of these 78(48%) patients had abnormal chromosome complements. Among all patients with chromosome abnormalities, 88% (69/78) had aberrations of chromosome number, 8% (6/78) had aberrations of chromosome structure and 4% (3/78) had aberrations of both. 90% (65/72) of numerical abnormality was Klinefelter's syndrome and the structural abnormality rate (5.6%, 9/162) was less than that (6.99%) of general population. The chromosomal study was mandatory for the detection of intersex in small testes or hypospadias with cryptorchism or clitoromegaly or bilateral cryptorchism. But unilateral cryptochism or hypospadias with normal scrotal testes was not thought to be indication of the chromosomal study if the external genitalia are otherwise quite normal.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.16
no.5
/
pp.29-37
/
2002
This paper presents the diagnostic method for fault prevention in metal clad switchgear(MCS) through comparison of signals before and after detecting the partial discharge using electromagnetic detection technique. Electromagnetic waves detected by antennas of the inside and outside of MCS are analyzed and compared by frequency spectrum analysis method which can estimate an insulation abnormality and normality of MCS. As a result of the experiment by the proposed method, we can detect the insulation abnormality as partial discharge in MCS and these results can be applied to preventive diagnosis of MCS.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.