• Title/Summary/Keyword: Abnormal precipitation

Search Result 70, Processing Time 0.026 seconds

Study on Prevention Method of Abnormal Precipitation in Buckwheat Extracts (메밀 추출물의 이상 침전 개선 효과에 관한 연구)

  • Yoon, Seong-Jun;Cho, Nam-Ji;Na, Seog-Hwan;Kim, Young-Ho;Kim, Young-Mo
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.6
    • /
    • pp.702-706
    • /
    • 2006
  • The aim of this study was to identify the onuses of abnormal precipitation in buckwheat extracts and to suggest the preventive solutions. Abnormal precipitation was formed by the coagulations of small round droplets, and increased when poor quality or old buckwheat used. It was found that, unlike poor quality buckwheat, extracts made from fresh buckwheat showed almost no saccharifying enzyme activity and a lower number of microorganisms. The addition of branched starch to the extracts restricted the occurrence of abnormal precipitation and microorganisms and imparted stability to the extracts.

  • PDF

Analysis on Wearing Characteristics of Main Wearing Slider for Pantograph According to Precipitation (강수의 영향에 따른 Pantograph 주습판의 마모특성 분석)

  • Kim, Kyung-Seob;Kim, Kwan-Soo;Cho, Kwan-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.994-999
    • /
    • 2011
  • The main wearing slider of pantograph is a difference which is considerable to wear phenomenon according to material properties. Especially, Cu-type wearing slider suddenly occurs the abnormal wear by precipitation, this threatens the travelling safety of the train. The abnormal wear by precipitation and arc influences are main factor decided to life time of Cu-type wearing slider and contact wire. Consequently, the application of the main wearing slider with wear resisting capacity, electrical conductivity, resistance arc and lubrication is demanded. In this paper through tribologic approach, overcame abnormal phenomenon of the Cu-type wearing slider by the precipitation and for the economic efficient augmentation by durability improvement and the travelling safety were accomplished. The Cu-type wearing slider which has excellent electric conductivity and arc characteristic but it occurs the normal and abnormal wear phenomenon according the precipitation which changes, respectively. Consequently, this phenomenon grasps fixed quantity according to precipitation, a mileage and wear volume then Fe-type wearing slider compared and analyzed.

  • PDF

Calculated Damage of Italian Ryegrass in Abnormal Climate Based World Meteorological Organization Approach Using Machine Learning

  • Jae Seong Choi;Ji Yung Kim;Moonju Kim;Kyung Il Sung;Byong Wan Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.3
    • /
    • pp.190-198
    • /
    • 2023
  • This study was conducted to calculate the damage of Italian ryegrass (IRG) by abnormal climate using machine learning and present the damage through the map. The IRG data collected 1,384. The climate data was collected from the Korea Meteorological Administration Meteorological data open portal.The machine learning model called xDeepFM was used to detect IRG damage. The damage was calculated using climate data from the Automated Synoptic Observing System (95 sites) by machine learning. The calculation of damage was the difference between the Dry matter yield (DMY)normal and DMYabnormal. The normal climate was set as the 40-year of climate data according to the year of IRG data (1986~2020). The level of abnormal climate was set as a multiple of the standard deviation applying the World Meteorological Organization (WMO) standard. The DMYnormal was ranged from 5,678 to 15,188 kg/ha. The damage of IRG differed according to region and level of abnormal climate with abnormal temperature, precipitation, and wind speed from -1,380 to 1,176, -3 to 2,465, and -830 to 962 kg/ha, respectively. The maximum damage was 1,176 kg/ha when the abnormal temperature was -2 level (+1.04℃), 2,465 kg/ha when the abnormal precipitation was all level and 962 kg/ha when the abnormal wind speed was -2 level (+1.60 ㎧). The damage calculated through the WMO method was presented as an map using QGIS. There was some blank area because there was no climate data. In order to calculate the damage of blank area, it would be possible to use the automatic weather system (AWS), which provides data from more sites than the automated synoptic observing system (ASOS).

Recent Changes in the Frequency of Occurrence of Extreme Weather Events in South Korea (최근 우리나라의 이상기상 발생횟수의 변화)

  • Shim, Kyo Moon;Kim, Yong Seok;Jung, Myung Pyo;Kim, Ji Won;Park, Mi Sun;Hong, Su Hak;Kang, Kee-Kyung
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.461-470
    • /
    • 2018
  • The frequency of extreme weather events was analyzed using meteorological data (air temperature, precipitation, and duration of sunshine) collected from 61 stations over a 36-year span (1981-2016). The 10-day meteorological data were used as a basic unit for this analysis. On average, the frequency of occurrence of abnormal weather was 9.88 per year and has increased significantly during this 36-year period. According to the type of abnormal weather, the frequencies of occurrence of abnormally high air temperature and short duration of sunshine have increased by 0.50 and 0.41 per 10 years, respectively; however, that for abnormally low air temperature has decreased by 0.31 per 10 years and the trend was statistically significant. The highest frequency of abnormal weather appeared in 2007, with a frequency of 14.31. Abnormal weather was the most frequent at Yeongdeok station with an average frequency of 11.78 per year over this 36-year span.

Sensitivity of Indian Summer Monsoon Precipitation to Parameterization Schemes

  • Singh, G.P.
    • The Korean Journal of Quaternary Research
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • The Indian summer monsoon behaved an abnormal way in 2002 and as a result there was a large deficiency in precipitation (especially in July) over a large part of the Indian subcontinent. For the study of deficient monsoon of 2002, a recent version of the NCAR regional climate model (RegCM3) has been used to examine the important features of summer monsoon circulations and precipitation during 2002. The main characteristics of wind fields at lower level (850 hPa) and upper level (200 hPa) and precipitation simulated with the RegCM3 over the Indian subcontinent are studied using different cumulus parameterization schemes namely, mass flux schemes, a simplified Kuo-type scheme and Emanuel (EMU) scheme. The monsoon circulation features simulated by RegCM3 are compared with the NCEP/NCAR reanalysis and simulated precipitation is validated against observation from the Global Precipitation Climatology Centre (GPCC). Validation of the wind fields at lower and upper levels show that the use of Arakawa and Schubert (AS) closure in Grell convection scheme, a Kuo type and Emanuel schemes produces results close to the NCEP/NCAR reanalysis. Similarly, precipitation simulated with RegCM3 over different homogeneous zones of India with the AS closure in Grell is more close to the corresponding observed monthly and seasonal values. RegcM3 simulation also captured the spatial distribution of deficient rainfall in 2002.

  • PDF

Simulation of anomalous Indian Summer Monsoon of 2002 with a Regional Climate Model

  • Singh, G.P.;Oh, Jai-Ho
    • The Korean Journal of Quaternary Research
    • /
    • v.22 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • The Indian summer monsoon behaved in an abnormal way in 2002 and as a result there was a large deficiency in precipitation (especially in July) over a large part of the Indian subcontinent. For the study of deficient monsoon of 2002, a recent version of the NCAR regional climate model (RegCM3) has been used to examine the important features of summer monsoon circulations and precipitation during 2002. The main characteristics of wind fields at lower level (850 hPa) and upper level (200 hPa) and precipitation simulated with the RegCM3 over the Indian subcontinent are studied using different cumulus parameterization schemes namely, mass flux schemes, a simplified Kuo-type scheme and Emanuel (EMU) scheme. The monsoon circulation features simulated by RegCM3 are compared with the NCEP/NCAR reanalysis and simulated precipitation is validated against observation from the Global Precipitation Climatology Centre (GPCC). Validation of the wind fields at lower and upper levels shows that the use of Arakawa and Schubert (AS) closure in Grell convection scheme, a Kuo type and Emanuel schemes produces results close to the NCEP/NCAR reanalysis. Similarly, precipitation simulated with RegCM3 over different homogeneous zones of India with the AS closure in Grell is more close to the corresponding observed monthly and seasonal values. RegcM3 simulation also captured the spatial distribution of deficient rainfall in 2002.

  • PDF

Development of Improved Semi-Active Damper Using EMRF (EMRF를 이용한 개선된 Semi-Active Damper 개발)

  • Jeon, Seung gon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.149-156
    • /
    • 2022
  • Magneto-Rheological Fluid (MRF) is a functional fluid in which flow characteristics change into magnetic force due to its magnetic particles. When the semi-active control device does not use MRF for a long time, precipitation of magnetic particles and abnormal control force occur. Thus, Electro Magneto-Rheological Fluid (EMRF), which improves the precipitation of magnetic particles for MRF and exhibits existing control performance, was developed in this study. First, the optimal mix proportion ratio was selected by conducting a precipitation experiment and a controlled force test by varying the content of grease based on the existing MRF components. Also, EMRF was applied to the shear-type damper to evaluate the control performance when applied to the control device. The cylinder-type damper was developed to apply to the structure, and control performance evaluation was conducted. The result confirmed that the precipitation of the magnetic particles was improved, while the damper using EMRF exhibited excellent control performance.

Impact of abnormal climate events on the production of Italian ryegrass as a season in Korea

  • Kim, Moonju;Sung, Kyungil
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.77-90
    • /
    • 2021
  • This study aimed to assess the impact of abnormal climate events on the production of Italian ryegrass (IRG), such as autumn low-temperature, severe winter cold and spring droughts in the central inland, southern inland and southern coastal regions. Seasonal climatic variables, including temperature, precipitation, wind speed, relative humidity, and sunshine duration, were used to set the abnormal climate events using principal component analysis, and the abnormal climate events were distinguished from normal using Euclidean-distance cluster analysis. Furthermore, to estimate the impact caused by abnormal climate events, the dry matter yield (DMY) of IRG between abnormal and normal climate events was compared using a t-test with 5% significance level. As a result, the impact to the DMY of IRG by abnormal climate events in the central inland of Korea was significantly large in order of severe winter cold, spring drought, and autumn low-temperature. In the southern inland regions, severe winter cold was also the most serious abnormal event. These results indicate that the severe cold is critical to IRG in inland regions. Meanwhile, in the southern coastal regions, where severe cold weather is rare, the spring drought was the most serious abnormal climate event. In particular, since 2005, the frequency of spring droughts has tended to increase. In consideration of the trend and frequency of spring drought events, it is likely that drought becomes a NEW NORMAL during spring in Korea. This study was carried out to assess the impact of seasonal abnormal climate events on the DMY of IRG, and it can be helpful to make a guideline for its vulnerability.

Calculation of Damage to Whole Crop Corn Yield by Abnormal Climate Using Machine Learning (기계학습모델을 이용한 이상기상에 따른 사일리지용 옥수수 생산량에 미치는 피해 산정)

  • Ji Yung Kim;Jae Seong Choi;Hyun Wook Jo;Moonju Kim;Byong Wan Kim;Kyung Il Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.1
    • /
    • pp.11-21
    • /
    • 2023
  • This study was conducted to estimate the damage of Whole Crop Corn (WCC; Zea Mays L.) according to abnormal climate using machine learning as the Representative Concentration Pathway (RCP) 4.5 and present the damage through mapping. The collected WCC data was 3,232. The climate data was collected from the Korea Meteorological Administration's meteorological data open portal. The machine learning model used DeepCrossing. The damage was calculated using climate data from the automated synoptic observing system (ASOS, 95 sites) by machine learning. The calculation of damage was the difference between the dry matter yield (DMY)normal and DMYabnormal. The normal climate was set as the 40-year of climate data according to the year of WCC data (1978-2017). The level of abnormal climate by temperature and precipitation was set as RCP 4.5 standard. The DMYnormal ranged from 13,845-19,347 kg/ha. The damage of WCC which was differed depending on the region and level of abnormal climate where abnormal temperature and precipitation occurred. The damage of abnormal temperature in 2050 and 2100 ranged from -263 to 360 and -1,023 to 92 kg/ha, respectively. The damage of abnormal precipitation in 2050 and 2100 was ranged from -17 to 2 and -12 to 2 kg/ha, respectively. The maximum damage was 360 kg/ha that the abnormal temperature in 2050. As the average monthly temperature increases, the DMY of WCC tends to increase. The damage calculated through the RCP 4.5 standard was presented as a mapping using QGIS. Although this study applied the scenario in which greenhouse gas reduction was carried out, additional research needs to be conducted applying an RCP scenario in which greenhouse gas reduction is not performed.

A Study on the Stormwater Drainage Method of Overflow Type for the Prevention of Urban Flood due to Abnormal Precipitation (이상강우 발생시 도시침수 방지를 위한 월류형 우수배수방법 연구)

  • Seo, Se Deok;Park, Hyung Keun;Kim, Tae Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.569-577
    • /
    • 2019
  • Urban flooding has been a frequent phenomenon in recent years caused by the increase in maximum stormwater runoff arising from abnormal rainfall due to global warming, urban development, and development of lowlands according to population inflows. In order to respond positively against abnormal precipition in the city, it is necessary to check the GWI (Green Water Infra) effect and effectively utilize the existing stormwater detention tanks and treat stormwater to prevent local flooding. In this study, Overflow Type stormwater drainage methods are evaluated as a method of preventing urban flooding in abnormal precipitation using the Dynamic Wave Analysis SWMM (Storm Water Management Model) provided by the United States Environmental Protection Agency. Comparing and analyzing the Upward Watergate Type and Overflow Type, it was analyzed that the Overflow Type reduces the maximum flood discharge by 61 % and the total flood volume by 56 % in the rainfall of Typhoon Kong-rey. The application of the Overflow Type and the natural-pneumatic drainage method to the rainfall of Typhoon Soulik resulted in a 20 % reduction in maximum flood runoff and a 67 % reduction in total flood quantity. Therefore, as a solution to the abnormal rain fall, it is possible to improve the existing stormwater detection tank and install additional facilities. It is expected to be economically possible to strom drainage under limited conditions.