• 제목/요약/키워드: Abnormal oxidation

검색결과 40건 처리시간 0.028초

Effect of Cigarette Smoke Exposure Against Oxidative Damage in Scrapie-infected Mice

  • Sohn, Hyung-Ok;Moon, Ja-Young;Lim, Heung-Bin;Lee, Dong-Wook
    • 한국연초학회지
    • /
    • 제31권1호
    • /
    • pp.29-38
    • /
    • 2009
  • Although prion diseases, a group of fatal neurodegenerative diseases of human and animals, are presumed to be caused by several mechanisms including abnormal change of prion protein, oxidative stress is still believed to play a central role in development of the diseases. Cigarette smoking has a few beneficial effects on neuronal diseases such as Alzheimer's disease and Parkinson's disease despite of many detrimental effects. In this study, we investigated how chronic cigarette smoking could exert such beneficial effect against oxidative damage. For this study, homogenates of 87V scrapie-infected brain was inoculated on intracerebral system of IM mice through stereotaxic microinjection and biochemical properties concerning with oxidative stress were examined. The scrapie infection decreased the activity of mitochondrial Mn-containing superoxide dismutase by 50% of the control, meanwhile the effects on other antioxidant enzymes including Cu or Zn-containing superoxide dismutase were not significant. Additionally, the infection elevated superoxide level as well as monoamine oxide-B (MAO-B) in the infected brain. Interestingly, many of the detrimental effects were improved in partial or significantly by long-term cigarette smoke exposure (CSE). CSE not only completely prevented the generation of mitochondrial superoxide but also significantly (p<0.05) decreased the elevated mitochondrial MAO-B activity in the infected brain. Concomitantly, CSE prevented subsequent protein oxidation and lipid peroxidation caused by scrapie infection; however, it did not affect the activities of antioxidant enzymes. These results suggest that chronic exposure of cigarette smoke contribute to in part preventing the progress of neurodegeneration caused by scrapie infection.

카본 및 보론 첨가가 탄화규소 열간 가압 소결거동 및 기계적 특성에 미치는 영향 (Effect of carbon and boron addition on sintering behavior and mechanical properties of hot-pressed SiC)

  • 안종필;채재홍;김경훈;박주석;김대근;김형순
    • 한국결정성장학회지
    • /
    • 제18권1호
    • /
    • pp.15-21
    • /
    • 2008
  • 탄화규소(SiC)는 산화저항성, 내식성, 고온 강도 및 열전도 특성 등의 기계적 특성이 매우 우수한 재료로 알려져 있지만, 강한 공유결합성으로 인하여 그 소결이 매우 어려운 재료이다. 본 연구에서는 치밀한 탄화규소 소결체를 제조하기 위하여 카본 및 보론을 소결 첨가제로하여 열간 가압 소결법을 적용하여 탄화규소 소결체를 제작하여 그 특성을 평가하였다. 카본의 첨가는 탄화규소의 소결을 촉진하는 역할을 하여 비정상 입성장을 억제하기 때문에 미세하고 균일한 미세구조를 형성하였기 때문에 탄화규소 소결체의 기계적 특성을 향상시키는 것을 확인 할 수 있었다. 또한 차본의 첨가는 소결 중 보론의 첨가에 의해 발생하는 탄화규소의 6H 구조에서 4H 구조로의 상전이를 억제함을 알 수 있었다.

Effects of Snake Venom Pharmacopuncture on a Mouse model of Cerebral Infarction

  • Choi, Chul-Hoon;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • 제36권3호
    • /
    • pp.140-146
    • /
    • 2019
  • Background: This study investigated the effects of Vipera lebetina turanica snake venom (SV) on cerebral infarction induced by middle cerebral artery occlusion in mice. Methods: Following cerebral infarction, SV was injected intravenously or added to BV2 cell culture. Tissue injury was detected using triphenyltetrazolium chloride (TTC) staining, neurological deficit score, NO, ROS, and GSH/GSSG assays, qPCR, Western blot, and cell viability. Results: Cerebral infarction caused by middle cerebral artery occlusion as observed by TTC staining, showed SV inhibited cell death, reducing the number of brain cells injured due to infarction. SV treatment for cerebral infarction showed a significant decrease in abnormal behavior, as determined by the neurological deficit score. The oxidation and inflammation of the cells that had cerebral infarction caused by middle cerebral artery occlusion (NO assay, ROS, GSH/GSSG assay, and qPCR), showed significant protection by SV. Western blot of brain infarction cells showed the expression of iNOS, COX-2, p-IkB-${\alpha}$, P38, p-JNK, p-ERK to be lower in the SV group. In addition, the expression of IkB increased. BV2 cells were viable when treated with SV at $20{\mu}g/mL$ or less. Western blot of BV2 cells, treated with 0.625, 1.5, $2.5{\mu}g/mL$ of SV, showed a significant decrease in the expression of p-IkB-${\alpha}$, p-JNK, iNOS, and COX-2 on BV2 cells induced by LPS. Conclusion: SV showed anti-inflammatory and anti-oxidant effects against cerebral infarction and inflammation.

고대 철확(철솥)의 1천년 반복 가열 및 열화현상 (Material Degradation of Ancient Iron Pot by Repeated Heating for One Thousand Years)

  • 고형순;한민수;최병학;민두식;심윤임;정효태;조남철
    • 대한금속재료학회지
    • /
    • 제50권4호
    • /
    • pp.324-330
    • /
    • 2012
  • The microstructural changes of three pieces from an ancient iron pot were studied in order to identify present the material degradation due to repeated heating for one-thousand years. The microstructures of the pieces were divided into the areas of ferrite/graphite, ferrite/pearlite, and corroded oxidation. The area of ferrite/graphite was undergone by severe Galvanic corrosion, but that of ferrite/pearlite was not even during a thousand years' using. The shape of the graphites was coexisted with types of A, B, and C of as modern graphite classification. In the ferrite/pearlite area, abnormal acicula precipitates with a high aspect ratio of $0.2{\mu}m$ thickness and several hundreds ${\mu}m$ length were presented. They might be a kind of carbide in the ferrite matrix with its special precipitate plane.

Antioxidant and Antimelanogenic Activities of Kimchi-Derived Limosilactobacillus fermentum JNU532 in B16F10 Melanoma Cells

  • Meng, Ziyao;Oh, Sejong
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.990-998
    • /
    • 2021
  • Melanin is a natural skin pigment produced by specialized cells called melanocytes via a multistage biochemical pathway known as melanogenesis, involving the oxidation and polymerization of tyrosine. Melanogenesis is initiated upon exposure to ultraviolet (UV) radiation, causing the skin to darken, which protects skin cells from UVB radiation damage. However, the abnormal accumulation of melanin may lead to the development of certain skin diseases, including skin cancer. In this study, the antioxidant and antimelanogenic activities of the cell-free supernatant (CFS) of twenty strains were evaluated. Based on the results of 60% 2,2-diphenyl-1-picrylhydrazyl scavenging activity, 21% 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) scavenging capacity, and a 50% ascorbic acid equivalent ferric reducing antioxidant power value, Limosilactobacillus fermentum JNU532 was selected as the strain with the highest antioxidant potential. No cytotoxicity was observed in cells treated with the CFS of L. fermentum JNU532. Tyrosinase activity was reduced by 16.7% in CFS-treated B16F10 cells (but not in the cell-free system), with >23.2% reduction in melanin content upon treatment with the L. fermentum JNU532-derived CFS. The inhibitory effect of the L. fermentum JNU532-derived CFS on B16F10 cell melanogenesis pathways was investigated using quantitative reverse transcription polymerase chain reaction and western blotting. The inhibitory effects of the L. fermentum JNU532-derived CFS were mediated by inhibiting the transcription of TYR, TRP-1, TRP-2, and MITF and the protein expression of TYR, TRP-1, TRP-2, and MITF. Therefore, L. fermentum JNU532 may be considered a potentially useful, natural depigmentation agent.

Developmental Roles of D-bifunctional Protein-A Zebrafish Model of Peroxisome Dysfunction

  • Kim, Yong-Il;Bhandari, Sushil;Lee, Joon No;Yoo, Kyeong-Won;Kim, Se-Jin;Oh, Gi-Su;Kim, Hyung-Jin;Cho, Meyoung;Kwak, Jong-Young;So, Hong-Seob;Park, Raekil;Choe, Seong-Kyu
    • Molecules and Cells
    • /
    • 제37권1호
    • /
    • pp.74-80
    • /
    • 2014
  • The peroxisome is an intracellular organelle that responds dynamically to environmental changes. Various model organisms have been used to study the roles of peroxisomal proteins in maintaining cellular homeostasis. By taking advantage of the zebrafish model whose early stage of embryogenesis is dependent on yolk components, we examined the developmental roles of the D-bifunctional protein (Dbp), an essential enzyme in the peroxisomal ${\beta}$-oxidation. The knockdown of dbp in zebrafish phenocopied clinical manifestations of its deficiency in human, including defective craniofacial morphogenesis, growth retardation, and abnormal neuronal development. Overexpression of murine Dbp rescued the morphological phenotypes induced by dbp knockdown, indicative of conserved roles of Dbp during zebrafish and mammalian development. Knockdown of dbp impaired normal development of blood, blood vessels, and most strikingly, endoderm-derived organs including the liver and pancreas - a phenotype not reported elsewhere in connection with peroxisome dysfunction. Taken together, our results demonstrate for the first time that zebrafish might be a useful model animal to study the role of peroxisomes during vertebrate development.

B16F10 피부 흑색종세포에서 갯사상자 추출물의 멜라닌 합성 저해 효과 (Anti-melanogenic Effects of Cnidium japonicum in B16F10 Murine Melanoma Cells)

  • 조현진;카라데니즈 파티;오정환;서영완;공창숙
    • 생명과학회지
    • /
    • 제32권5호
    • /
    • pp.331-339
    • /
    • 2022
  • 멜라닌은 자외선과 같은 외부자극이 가해지면 피부 기저층에 존재하는 멜라닌 세포에서 피부를 보호하기 위한 방어기전으로써 생성이 된다. 하지만 과도한 자외선 노출로 멜라닌이 필요이상으로 생성이 되면 기미, 주근깨, 검버섯과 같은 색소침착 및 색소성 피부장애를 유발할 수 있다. 최근에는 부작용이 적은 식물 추출물을 대상으로 미백소재를 찾기 위한 연구들이 활기를 띠고 있다. 이에 본 연구에서는 국내 서식 염생식물인 갯사상자 추출물을 이용하여 B16F10 흑색종 세포에서 피부 색소 멜라닌 생성 억제에 미치는 효과를 확인하였다. 갯사상자 추출물 처리시 tyrosine 및 L-DOPA 산화를 농도 의존적으로 저해하였으며 세포 내의 멜라닌 생성을 담당하는 tyrosinase, tyrosinase-related protein-1, -2 발현을 억제하였다. 이는 갯사상자 추출물이 α-MSH에 의한 세포신호 전달 경로인 GSKβ/β-catenin 및 PKA/CREB 조절에 의한 것으로 밝혀졌다. 따라서 갯사상자 추출물은 GSKβ/β-catenin 및 PKA/CREB 기전을 통해 멜라닌 합성을 억제하여 미백 효능 지닌 천연물 유래 기능성 화장품 소재로서 활용 가능할 것으로 사료된다.

Role of soy lecithin combined with soy isoflavone on cerebral blood flow in rats of cognitive impairment and the primary screening of its optimum combination

  • Hongrui Li;Xianyun Wang;Xiaoying Li;Xueyang Zhou;Xuan Wang;Tiantian Li;Rong Xiao;Yuandi Xi
    • Nutrition Research and Practice
    • /
    • 제17권2호
    • /
    • pp.371-385
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Soy isoflavone (SIF) and soy lecithin (SL) have beneficial effects on many chronic diseases, including neurodegenerative diseases. Regretfully, there is little evidence to show the combined effects of these soy extractives on the impairment of cognition and abnormal cerebral blood flow (CBF). This study examined the optimal combination dose of SIF + SL to provide evidence for improving CBF and protecting cerebrovascular endothelial cells. MATERIALS/METHODS: In vivo study, SIF50 + SL40, SIF50 + SL80 and SIF50 + SL160 groups were obtained. Morris water maze, laser speckle contrast imaging (LSCI), and hematoxylin-eosin staining were used to detect learning and memory impairment, CBF, and damage to the cerebrovascular tissue in rat. The 8-hydroxy-2'-deoxyguanosine (8-OHdG) and the oxidized glutathione (GSSG) were detected. The anti-oxidative damage index of superoxide dismutase (SOD) and glutathione (GSH) in the serum of an animal model was also tested. In vitro study, an immortalized mouse brain endothelial cell line (bEND.3 cells) was used to confirm the cerebrovascular endothelial cell protection of SIF + SL. In this study, 50 µM of Gen were used, while the 25, 50, or 100 µM of SL for different incubation times were selected first. The intracellular levels of 8-OHdG, SOD, GSH, and GSSG were also detected in the cells. RESULTS: In vivo study, SIF + SL could increase the target crossing times significantly and shorten the total swimming distance of rats. The CBF in the rats of the SIF50 + SL40 group and SIF50 + SL160 group was enhanced. Pathological changes, such as attenuation of the endothelium in cerebral vessels were much less in the SIF50 + SL40 group and SIF50 + SL160 group. The 8-OHdG was reduced in the SIF50 + SL40 group. The GSSG showed a significant decrease in all SIF + SL pretreatment groups, but the GSH showed an opposite result. SOD was upregulated by SIF + SL pretreatment. Different combinations of Genistein (Gen)+SL, the secondary proof of health benefits found in vivo study, showed they have effective anti-oxidation and less side reaction on protecting cerebrovascular endothelial cell. SIF50 + SL40 in rats experiment and Gen50 + SL25 in cell test were the optimum joint doses on alleviating cognitive impairment and regulating CBF through protecting cerebrovascular tissue by its antioxidant activity. CONCLUSIONS: SIF+SL could significantly prevent cognitive defect induced by β-Amyloid through regulating CBF. This kind of effect might be attributed to its antioxidant activity on protecting cerebral vessels.

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • 한국환경성돌연변이발암원학회:학술대회논문집
    • /
    • 한국환경성돌연변이발암원학회 2003년도 추계학술대회
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF

오디추출물 투여가 류머티즘 요인이 있는 일부 한국 중년여성의 혈중 항산화 및 항염증 관련 지표수준에 미치는 영향 (The Effects of Mulberry Extract Consumption on the Serum Levels of Oxidant and Inflammatory Factors in Middle-aged Women with Rheumatoid Factors)

  • 신정희;한세미;김애정
    • 한국산학기술학회논문지
    • /
    • 제13권8호
    • /
    • pp.3561-3569
    • /
    • 2012
  • 본 연구의 목적은 오디가 류머티스 요인(Rheumatoid Factor: RF>10 u/mL)이 있는 중년여성의 혈중 항산화 및 항염증 지표수준에 미치는 영향을 알아보고자 32명의 중년여성을 2군 (NMG, AMG)으로 나누어 4주간의 오디 추출물 투여 전ㆍ후로 체성분 측정 및 채혈을 통하여 혈청 산화(TBARS, FRAP) 및 염증성 지표물질(요산, C-reactive protein: CRP, RF 및 homocystein) 농도를 분석 및 비교하였다. 연구결과 오디 추출물 투여에 따른 NMG와 AMG간의 체성분에는 차이가 없었다. AMG의 CRP 수준은 $0.80{\pm}0.05$ mg/dL에서 $0.55{\pm}0.02$ mg/dL로 유의적으로 감소하였다(p<0.05). AMG의 오디 추출물 투여 전의 혈청 TBARS 수준($63.04{\pm}12.20$ mol/L)은 투여 후($57.44{\pm}11.16$ mol)와 유의적인 차이는 없었으나, 감소하는 경향을 보였다. AMG의 혈청 FRAP 수준은 급여 전($1239.02{\pm}63.22$ mol)에 비해 급여 후($1556.21{\pm}11.16$ mol) 유의적으로 증가되었다(p<0.05). AMG의 혈청 TNF-${\alpha}$$8.78{\pm}0.12$ pg/mL에서 $6.58{\pm}0.16$ pg/mL로, IL-2 수준은 $5.41{\pm}0.71$ pg/mL에서 $3.94{\pm}0.03$ pg/mL로, IL-4 수준은 $7.21{\pm}0.61$ pg/mL에서 $5.15{\pm}0.36$ pg/mL로 감소하여 오디 추출물 투여에 의한 항산화 및 항염증 활성이 규명되었다. 이상의 연구결과로 볼 때 오디는 류머티즘 요인이 있는 중년여성의 항산화 및 항염증 활성을 강화시키는데 도움이 된 것으로 보인다. 따라서 산화 스트레스 감소를 통한 염증조절물질로써 오디를 꾸준히 섭취한다면 류머티스 관절염(Rheumatoid Arthiritis: RA)환자의 질병관리에 부작용 없이 도움이 될 것으로 사료된다. 본 연구를 기초로 후속적으로 RA 발병 유발인자인 사이토카인을 효과적으로 통제할 수 있는 오디를 활용한 치료식 개발 및 보급을 활성화하여 국내 오디 농가의 부가가치 창출에도 기여할 수 있을 것으로 기대된다.