• 제목/요약/키워드: Abnormal object detection

검색결과 48건 처리시간 0.021초

YOLOv5 based Anomaly Detection for Subway Safety Management Using Dilated Convolution

  • Nusrat Jahan Tahira;Ju-Ryong Park;Seung-Jin Lim;Jang-Sik Park
    • 한국산업융합학회 논문집
    • /
    • 제26권2_1호
    • /
    • pp.217-223
    • /
    • 2023
  • With the rapid advancement of technologies, need for different research fields where this technology can be used is also increasing. One of the most researched topic in computer vision is object detection, which has widely been implemented in various fields which include healthcare, video surveillance and education. The main goal of object detection is to identify and categorize all the objects in a target environment. Specifically, methods of object detection consist of a variety of significant techniq ues, such as image processing and patterns recognition. Anomaly detection is a part of object detection, anomalies can be found various scenarios for example crowded places such as subway stations. An abnormal event can be assumed as a variation from the conventional scene. Since the abnormal event does not occur frequently, the distribution of normal and abnormal events is thoroughly imbalanced. In terms of public safety, abnormal events should be avoided and therefore immediate action need to be taken. When abnormal events occur in certain places, real time detection is required to prevent and protect the safety of the people. To solve the above problems, we propose a modified YOLOv5 object detection algorithm by implementing dilated convolutional layers which achieved 97% mAP50 compared to other five different models of YOLOv5. In addition to this, we also created a simple mobile application to avail the abnormal event detection on mobile phones.

객체 추적을 통한 이상 행동 감시 시스템 연구 (A Study on Monitoring System for an Abnormal Behaviors by Object's Tracking)

  • 박화진
    • 디지털콘텐츠학회 논문지
    • /
    • 제14권4호
    • /
    • pp.589-596
    • /
    • 2013
  • 사회의 범죄율 증가와 더불어 지능형 보안 시스템강화에 대한 관심이 높아지고 있다. 이에 본 연구에서는 CCTV에 획득되는 영상으로부터 객체의 이상 행동을 감지하는 시스템을 제안한다. 배경영상과의 차연산 및 모폴로지를 통해 객체를 검출하고 객체의 특징 정보를 이용해 각각의 객체를 인식하여 추적하여 이를 통해 이상행동을 탐지한다. 객체가 영상 내에서 일정시간 이상을 배회했을 때 이를 이상행동으로 판단하여 사전에 관제센터에 알려 미연에 방지할 수 있도록 한다. 특히 본 연구는 이상 행동 중 객체의 배회행위를 감지하는 것을 목표로 하며 영상 내에서 사라진 객체가 다시 영상 내로 들어 왔을 때의 이전 객체와의 동일여부를 판단할 수 있도록 하였다.

객체 탐지와 행동인식을 이용한 영상내의 비정상적인 상황 탐지 네트워크 (Abnormal Situation Detection on Surveillance Video Using Object Detection and Action Recognition)

  • 김정훈;최종혁;박영호;나스리디노프 아지즈
    • 한국멀티미디어학회논문지
    • /
    • 제24권2호
    • /
    • pp.186-198
    • /
    • 2021
  • Security control using surveillance cameras is established when people observe all surveillance videos directly. However, this task is labor-intensive and it is difficult to detect all abnormal situations. In this paper, we propose a deep neural network model, called AT-Net, that automatically detects abnormal situations in the surveillance video, and introduces an automatic video surveillance system developed based on this network model. In particular, AT-Net alleviates the ambiguity of existing abnormal situation detection methods by mapping features representing relationships between people and objects in surveillance video to the new tensor structure based on sparse coding. Through experiments on actual surveillance videos, AT-Net achieved an F1-score of about 89%, and improved abnormal situation detection performance by more than 25% compared to existing methods.

지능형 감시를 위한 객체추출 및 추적시스템 설계 및 구현 (A Study on the Object Extraction and Tracking System for Intelligent Surveillance)

  • 장태우;신용태;김종배
    • 한국통신학회논문지
    • /
    • 제38B권7호
    • /
    • pp.589-595
    • /
    • 2013
  • 최근 보안 관제를 위한 인원부족 및 감시 능력의 한계로 자동화된 지능형 관제 시스템에 대한 요구가 증가하고 있다. 이 논문에서는 지능형 감시시스템의 구축을 위하여 자동화된 객체추출 및 추적 시스템, 그리고 이상행위를 인지하는 이상행위 검출 시스템을 설계하고 구현하였다. 각 모듈은 기존의 연구 결과를 바탕으로 실제 환경에서 적용되고 상용화가 가능하도록 알고리즘의 성능을 높였으며, 구현 후 다양한 테스트를 통해 그 성과를 검증하였다. 특히, 배회 또는 도주와 같은 이상행위의 경우 1초 이내에 검출할 수 있었다.

사용자 지정 경로를 이용한 비정상 교통 행위 탐지 (Abnormal Traffic Behavior Detection by User-Define Trajectory)

  • 유한주;최진영
    • 전자공학회논문지SC
    • /
    • 제48권5호
    • /
    • pp.25-30
    • /
    • 2011
  • 본 논문은 교통 감시를 수행하는 고정 카메라에서, 움직이는 물체들의 궤적을 사용자가 입력한 사용자 지정 경로를 바탕으로 그 정상/비정상성을 판별하는 방법을 제안한다. 제안된 방법은 입력된 경로 정보를 미리 정해진 규칙에 따라 각각의 이동 물체에 대한 비정상성(abnormality)을 계산하고 이를 임계값(Threshold)과 비교하여 비정상 행위를 판별해낸다. 사용자의 경로 정보 입력 기능을 이용하기 때문에 기존의 방법들에서 사용한, 계산량과 시간 소모가 크며 학습 데이터에 의해 그 성능이 크게 영향을 받는 정상 행위 (normal behavior) 모델링 단계를 배제하여 보다 빠르고 정확한 판별 결과를 제공한다. 뿐만 아니라 단순히 지정된 규칙만을 이용하지 않고 주어진 환경에 따라 규칙을 변형 적용하여 보다 강인한 판별 결과를 제공한다. 실험 결과는 본 논문에서 제안한 방법이 각종 교통 상황에서 발생하는 불법 및 비정상 교통 행위를 강인하게 판별해 냄을 보여준다.

다시점 영상에 대한 이상 물체 탐지 기반 영상 시놉시스 프레임워크 (Abnormal Object Detection-based Video Synopsis Framework in Multiview Video)

  • 팔라시 잉글;유진용;김영갑
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.213-216
    • /
    • 2022
  • There has been an increase in video surveillance for public safety and security, which increases the video data, leading to analysis, and storage issues. Furthermore, most surveillance videos contain an empty frame of hours of video footage; thus, extracting useful information is crucial. The prominent framework used in surveillance for efficient storage and analysis is video synopsis. However, the existing video synopsis procedure is not applicable for creating an abnormal object-based synopsis. Therefore, we proposed a lightweight synopsis methodology that initially detects and extracts abnormal foreground objects and their respective backgrounds, which is stitched to construct a synopsis.

Generative optical flow based abnormal object detection method using a spatio-temporal translation network

  • Lim, Hyunseok;Gwak, Jeonghwan
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권4호
    • /
    • pp.11-19
    • /
    • 2021
  • 이상 객체란 일반적이고 평범한 행동을 취하는 객체가 아닌 비정상적이고 흔하지 않은 행동을 하여 관찰이나 감시·감독을 필요로 하는 사람, 물체, 기계 장치 등을 뜻한다. 이를 사람의 지속적인 개입 없이 인공지능 알고리즘을 통해 탐지하기 위해서 광학 흐름 기법을 활용한 시간적 특징의 특이도를 관찰하는 방법이 많이 활용되고 있으며, 이 기법은 정해진 표현 범위가 없는 수많은 이상 행동을 식별하기에 적합하다. 본 연구에서는 생성적 적대 신경망(Generative Adversarial Network, GAN)으로 입력 영상 프레임을 광학 흐름 영상으로 변환하는 알고리즘을 학습시켜 비정상적인 상황을 식별한다. 특히 생성적 적대 신경망 모델이 입력 영상에 대한 중요한 특징 정보를 학습하고, 그 외 불필요한 이상치를 제외시키기 위한 전처리 과정과 학습 후 테스트 데이터셋에서 식별 정확도를 높이기 위한 후처리 과정을 고도화하여 전체적인 모델의 이상 행동 식별 성능을 향상시키는 기법을 제안한다. 이상 행동을 탐지하기 위한 학습 데이터셋으로 UCSD Pedestrian, UMN Unusual Crowd Activity를 활용하였으며, UCSD Ped2 데이터셋에서 프레임 레벨 AUC 0.9450, EER 0.1317의 수치를 보이며 이전 연구에서 도출된 성능 지표 대비 성능 향상이 확인되었다.

Dead Pixel Detection Method by Different Response at Hot & Cold Images for Infrared Camera

  • Ye, Seong-Eun;Kim, Bo-Mee
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권11호
    • /
    • pp.1-7
    • /
    • 2018
  • In this paper, we propose soft dead pixels detection method by analysing different response at hot and cold images. Abnormal pixels are able to effect detecting a small target. It also makes confusing real target or not cause of changing target size. Almost exist abnormal pixels after image signal processing even if dead pixels are removed by dead pixel compensation are called soft dead pixels. They are showed defect in final image. So removing or compensating dead pixels are very important for detecting object. The key idea of this proposed method, detecting dead pixels, is that most of soft deads have different response characteristics between hot image and cold image. General infrared cameras do NUC to remove FPN. Working 2-reference NUC must be needed getting data, hot & cold images. The way which is proposed dead pixel detection is that we compare response, NUC gain, at each pixel about two different temperature images and find out dead pixels if the pixels exceed threshold about average gain of around pixels.

보행자의 검출 및 추적을 기반으로 한 실시간 이상행위 분석 시스템 (Real-time Abnormal Behavior Analysis System Based on Pedestrian Detection and Tracking)

  • 김도훈;박상현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.25-27
    • /
    • 2021
  • 최근 딥러닝 기술의 발전으로 CCTV 카메라를 통해 획득한 영상 정보에서 객체의 이상행동을 분석하기 위한 컴퓨터 비전 기반 AI 기술들이 연구되었다. 위험 지역이나 보안 지역에는 범죄 예방 및 경계 감시를 위해 감시카메라가 설치되어 있는 경우가 다수 존재한다. 이러한 이유로 기업들에서는 감시카메라 환경에서 침입, 배회, 낙상, 폭행 같은 주요한 상황을 판단하기 위한 연구들이 진행되고 있다. 본 논문에서는 객체 검출 및 추적 방법을 사용한 실시간 이상 행위 분석 알고리즘을 제안한다.

  • PDF

다중 체온 감지용 지능형 카메라 개발 (Development of an intelligent camera for multiple body temperature detection)

  • 이수인;김윤수;석종원
    • 전기전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.430-436
    • /
    • 2022
  • 본 논문에서는 다중 체온 감지용 지능형 카메라를 제안한다. 제안하는 카메라는 광학(4056*3040) 및 열화상(640*480) 2종의 카메라로 구성되고 획득된 영상으로부터 사람의 표정 및 체온을 분석하여 이상 증상을 감지한다. 광학 및 열화상카메라는 동시에 운영되며 광학 영상에서 객체를 검출한 후 얼굴영역을 도출하여 표정분석을 수행한다. 열화상카메라는 광학카메라에서 얼굴영역으로 판단한 좌표 값을 적용하고 해당영역의 최고 온도를 측정하여 화면에 표출한다. 이상 징후 감지는 분석된 표정 3가지(무표정, 웃음, 슬픔)와 체온 값을 활용하여 판단하며 제안된 장비의 성능을 평가하기 위해 광학영상 처리부는 Caltech, WIDER FACE, CK+ 데이터셋을 3종의 영상처리 알고리즘(객체검출, 얼굴영역 검출, 표정분석)에 적용하였다. 실험결과로 객체검출률, 얼굴영역 검출률, 표정분석률 각각 91%, 91%, 84%을 도출하였다.