• 제목/요약/키워드: Abnormal Vibration Diagnostics

검색결과 11건 처리시간 0.026초

SVM기법을 이용한 진동계의 고장진단에 관한 연구 (Abnormal Diagnostics of Vibration System using SVM)

  • 고광원;오용설;정근용;허훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.932-937
    • /
    • 2003
  • When oil pressure of damper is lost or relative stiffness of spring drops in vibration system, it can be fatally dangerous situation. A fault diagnosis method for vibration system using Support Vector Machine(SVM)is suggested in the paper. SVM is used to classify input data or applied to function regression. System status can be classified by judging input data based on optimal separable hyperplane obtained using SVM which learns normal and abnormal status. It is learned from the relationship of system state variables in term of spring, mass and damper. Normal and abnormal status are learned using phase plane as in put space, then the learned SVM is used to construct algorithm to predict the system status quantitatively

  • PDF

자기조직화특징지도와 학습벡터양자화를 이용한 회전기계의 이상진동진단 알고리듬 (Abnormal Vibration Diagnostics Algorithm of Rotating Machinery Using Self-Organizing Feature Map nad Learing Vector Quantization)

  • 양보석;서상윤;임동수;이수종
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.331-337
    • /
    • 2000
  • The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal defect diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised learning algorithm is used to improve the quality of the classifier decision regions.

  • PDF

채터모델링과 진단법에 관한 연구 (A Study on the Modeling and Diagnostics on Chatter in Endmilling Operation)

  • 김영국;윤문철;하만경;심성보
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.971-974
    • /
    • 2001
  • In this study, the static and dynamic characteristics of endmilling process was modelled and the analytic realization of chatter mechanism was discussed. In this regard, We have discussed on the comparative assessment of recursive time series modeling algorithms that can represent the machining process and detect the abnormal machining behaviors in precision endmilling operation. In this study, simulation and experimental work were performed to show the malfunctional behaviors. For this purpose, new recursive(RLSM) were adopted for the on-line system identification and monitoring of a machining process, we can apply these new algorithms in real process for detection of abnormal chatter. Also, the stability lobe of chatter was analysed by varying parameter of cutting dynamices in regenerative chatter mechanics.

  • PDF

웨이브렛변환과 인공신경망 기법을 이용한 소형 왕복동 압축기의 상태 분류 (Classification of Normal/Abnormal Conditions for Small Reciprocating Compressors using Wavelet Transform and Artificial Neural Network)

  • 임동수;안경룡;양보석;안병하
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.796-801
    • /
    • 2000
  • The monitoring and diagnostics of the rotating machinery have been received considerable attention for many years. The objectives are to classify the machinery condition and to find out the cause of abnormal condition. This paper describes a signal classification method for diagnosing the rotating machinery using the artificial neural network and the wavelet transform. In order to extract salient features, the wavelet transform are used from primary noise signals. Since the wavelet transform decomposes raw time-waveform signals into two respective parts in the time space and frequency domain, more and better features can be obtained easier than time-waveform analysis. In the training phase for classification, self-organizing feature map(SOFM) and learning vector quantization(LVQ) are applied, and the accuracies of them are compared with each other. This paper is focused on the development of an advanced signal classifier to automatise the vibration signal pattern recognition. This method is verified by small reciprocating compressors, for refrigerator and normal and abnormal conditions are classified with high flexibility and reliability.

  • PDF

엔드밀 가공시 채터 모델링과 진단에 관한 연구 (A Study on the Modeling and Diagnostics on Chatter in Endmilling Operation)

  • 김영국;윤문철;하만경;심성보
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.101-108
    • /
    • 2001
  • In this study, the static and dynamic characteristics of endmilling process were modelled and the analytic realization of chatter mechanism was discussed. In this reward, We have discussed on the comparative assessment of recursive time series modeling algorithms that cal represent time machining process and detect the abnormal machining behaviors in precision endmilling operation. In this study, simulation and experimental works were performed to show the malfunctional behaviors. For this purpose, new recursive algorithm(RLSM) was adopted for the oil-line system identification and monitoring of a machining process, we can apply these new algorithms in real process for detection of abnormal chatter. Also, The stability lobe of chatter was analysed by varying parameter of cutting dynamics in regenerative chatter mechanics.

  • PDF

밀링가공시의 채터현상 연구 (A study on the behaviors of chatter in milling operation)

  • 김영국;윤문철;하만경;심성보
    • 한국기계가공학회지
    • /
    • 제1권1호
    • /
    • pp.123-132
    • /
    • 2002
  • In this study, the static and dynamic characteristics of endmilling process was modelled and the analytic realization of chatter mechanism was discussed. In this regard, We have discussed on the comparative assessment of recursive time series modeling algorithms that can represent the machining process and detect the abnormal machining behaviors in precision endmilling operation. In this study, simulation and experimental work were performed to show the malfunctional behaviors. For this purpose, new recursive least square method (RLSM) were adopted for the on-line system identification and monitoring of a machining process, we can apply these new algorithms in real process for detection of abnormal chatter. Also, The stability lobe of chatter was analysed by varying parameter of cutting dynamices in regenerative chatter mechanics.

  • PDF

웨이브릿 변환과 인공신경망 기법을 이용한 소형 왕복동 압축기의 상태 분류 (Condition Classification for Small Reciprocating Compressors Using Wavelet Transform and Artificial Neural Network)

  • 임동수;양보석;안병하;;김동조
    • 동력기계공학회지
    • /
    • 제7권2호
    • /
    • pp.29-35
    • /
    • 2003
  • The monitoring and diagnostics of the rotating machinery have been received considerable attention for many years. The objectives are to classify the machinery condition and to find out the cause of abnormal condition. This paper describes a classification method of diagnosing the small reciprocating compressor for refrigerators using the artificial neural network and the wavelet transform. In order to extract salient features, the wavelet transform are used from primary noise signals. Since the wavelet transform decomposes raw time-waveform signals into two respective parts in the time space and frequency domain, more and better features can be obtained easier than time-waveform analysis. In the training phase for classification, self-organizing feature map(SOFM) and learning vector quantization(LVQ) are applied, and the accuracies of them ate compared with each other. This paper is focused on the development of an advanced signal classifier to automatize the vibration signal pattern recognition. This method is verified by small reciprocating compressors, for refrigerator and normal and abnormal conditions are classified with high flexibility and reliability.

  • PDF

선반가공시 채터 모델링과 분석에 관한 연구 (A Study on the Modeling and Analysis of Chatter in Turning Operation)

  • 윤문철;조현덕;김성근;김영국;조희근
    • 한국공작기계학회논문집
    • /
    • 제10권4호
    • /
    • pp.76-83
    • /
    • 2001
  • In this study, the static and dynamic characteristics of turning process was modelled and the analytic realization of regen-erative chatter mechanism was discussed. In this regard, we have discussed on the comparative assessment of recursive times series modeling algorithms that can represent the machining process and detect the abnormal machining behaviors in precision turning operation. In this study, simulation and experimental work were performed to show the malfunction behaviors. For this purpose, new Recursive Extended Instrument Variable Method(REIVM) was adopted for the on-line system identification and monitoring of a machining process. Also, we can apply REIVE algorithms in real process for the detection of chatter frequency and dynamic property and analyze the stability lobe of the system by changing a parameter of cutting dynamics in regenerative chatter mechanics, if it is stable or unstable, Also, The stability lobe of chatter was analysed.

  • PDF

Trend Monitoring of A Turbofan Engine for Long Endurance UAV Using Fuzzy Logic

  • Kong, Chang-Duk;Ki, Ja-Young;Oh, Seong-Hwan;Kim, Ji-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권2호
    • /
    • pp.64-70
    • /
    • 2008
  • The UAV propulsion system that will be operated for long time at more than 40,000ft altitude should have not only fuel flow minimization but also high reliability and durability. If this UAV propulsion system may have faults, it is not easy to recover the system from the abnormal, and hence an accurate diagnostic technology must be needed to keep the operational reliability. For this purpose, the development of the health monitoring system which can monitor remotely the engine condition should be required. In this study, a fuzzy trend monitoring method for detecting the engine faults including mechanical faults was proposed through analyzing performance trends of measurement data. The trend monitoring is an engine conditioning method which can find engine faults by monitoring important measuring parameters such as fuel flow, exhaust gas temperatures, rotational speeds, vibration and etc. Using engine condition database as an input to be generated by linear regression analysis of real engine instrument data, an application of the fuzzy logic in diagnostics estimated the cause of fault in each component. According to study results. it was confirmed that the proposed trend monitoring method can improve reliability and durability of the propulsion system for a long endurance UAV to be operated at medium altitude.

A Study on Trend Monitoring of a Long Endurance UAV s Gas Turbine to be Operated at Medium High Altitude

  • Kho, Seong-Hee;Ki, Ja-Young;Kong, Chang-Duk;Oh, Seong-Hwan;Kim, Ji-Hyun
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.84-88
    • /
    • 2008
  • The UAV propulsion system that will be operated for long time at more than 40,000ft altitude should have not only fuel flow minimization but also high reliability and durability. If this UAV propulsion system may have faults, it is not easy to recover the system from the abnormal, and hence an accurate diagnostic technology must be needed to keep the operational reliability. For this purpose, the development of the health monitoring system which can monitor remotely the engine condition should be required. In this study, a fuzzy trend monitoring method for detecting the engine faults including mechanical faults was proposed through analyzing performance trends of measurement data. The trend monitoring is an engine conditioning method which can find engine faults by monitoring important measuring parameters such as fuel flow, exhaust gas temperatures, rotational speeds, vibration and etc. Using engine condition database as an input to be generated by linear regression analysis of real engine instrument data, an application of the fuzzy logic in diagnostics estimated the cause of fault in each component. According to study results, it was confirmed that the proposed trend monitoring method can improve reliability and durability of the propulsion system for a long endurance UAV to be operated at medium altitude.

  • PDF