• Title/Summary/Keyword: Abnormal Traffic

Search Result 140, Processing Time 0.026 seconds

A study on improvement of wind-resistance characteristics of the structure supporting road sign (도로표지판 지지구조물의 내풍성능 향상에 관한 연구)

  • Son, Yong-Chun;Park, Su-Yeong;Im, Jong-Guk;Sin, Min-Cheol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.485-488
    • /
    • 2008
  • The structure supporting road sign is a road information facility for ensuring the safe transportation and smooth traffic. But, lots of road information facilities were damaged by the typhoon "Maemi" in 2003. Such damaged facilities should be rehabilitated and could increase economic loss by causing traffic accident. Therefore, in this study, behavior that reduce wind load and improve wind resistance of the structure supporting road sign are studied about wind load beyond design specification by abnormal climate as below. The first is wind load reducing technique such that shear key resist wind load that is not greater than design wind speed but in case that it is over the design wind limit, column member is rotated on the inner steel pipe axis by the brittle failure of shear key. The second is the technique such that fail-safe the overturning of road sign panel by equipment installation in the vertical member. The third is the technique of installing stiffening plate inside the vertical member to relieve stress concentration.

  • PDF

A decentralized approach to damage localization through smart wireless sensors

  • Jeong, Min-Joong;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.43-54
    • /
    • 2009
  • This study introduces a novel approach for locating damage in a structure using wireless sensor system with local level computational capability to alleviate data traffic load on the centralized computation. Smart wireless sensor systems, capable of iterative damage-searching, mimic an optimization process in a decentralized way. The proposed algorithm tries to detect damage in a structure by monitoring abnormal increases in strain measurements from a group of wireless sensors. Initially, this clustering technique provides a reasonably effective sensor placement within a structure. Sensor clustering also assigns a certain number of master sensors in each cluster so that they can constantly monitor the structural health of a structure. By adopting a voting system, a group of wireless sensors iteratively forages for a damage location as they can be activated as needed. Since all of the damage searching process occurs within a small group of wireless sensors, no global control or data traffic to a central system is required. Numerical simulation demonstrates that the newly developed searching algorithm implemented on wireless sensors successfully localizes stiffness damage in a plate through the local level reconfigurable function of smart sensors.

A Development of Analysis System for Vessel Traffic Display and Statistics based on Maritime-BigData (해상-빅데이터 기반 선박 항적 표시 및 해상교통량 통계 분석 시스템의 개발)

  • Hwang, Hun-Gyu;Kim, Bae-Sung;Shin, Il-Sik;Song, Sang-Kee;Nam, Gyeung-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1195-1202
    • /
    • 2016
  • Recently, a lot of studies that applying the big data technology to various fields, are progressing actively. In the maritime domain, the big data is the meaningful information which makes and gathers by the navigation and communication equipment from the many ships on the ocean. Also, importance of the maritime safety is emphasized, because maritime accidents are rising with increasing of maritime traffic. To support prevention of maritime accidents, in this paper, we developed a vessel traffic display and statistic system based on AIS messages from the many vessels of maritime. Also, to verify the developed system, we conducted tests for vessel track display function and vessel traffic statistic function based on two test scenarios. Therefore, we verified the effectiveness of the developed system for vessel tracks display, abnormal navigation patterns, checking failure of AIS equipments and maritime traffic statistic analyses.

Detection Method of Distributed Denial-of-Service Flooding Attacks Using Analysis of Flow Information (플로우 분석을 이용한 분산 서비스 거부 공격 탐지 방법)

  • Jun, Jae-Hyun;Kim, Min-Jun;Cho, Jeong-Hyun;Ahn, Cheol-Woong;Kim, Sung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.203-209
    • /
    • 2014
  • Today, Distributed denial of service (DDoS) attack present a very serious threat to the stability of the internet. The DDoS attack, which is consuming all of the computing or communication resources necessary for the service, is known very difficult to protect. The DDoS attack usually transmits heavy traffic data to networks or servers and they cannot handle the normal service requests because of running out of resources. It is very hard to prevent the DDoS attack. Therefore, an intrusion detection system on large network is need to efficient real-time detection. In this paper, we propose the detection mechanism using analysis of flow information against DDoS attacks in order to guarantee the transmission of normal traffic and prevent the flood of abnormal traffic. The OPNET simulation results show that our ideas can provide enough services in DDoS attack.

Analysis of Traffic and Attack Frequency in the NURION Supercomputing Service Network (누리온 슈퍼컴퓨팅서비스 네트워크에서 트래픽 및 공격 빈도 분석)

  • Lee, Jae-Kook;Kim, Sung-Jun;Hong, Taeyoung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.5
    • /
    • pp.113-120
    • /
    • 2020
  • KISTI(Korea Institute of Science and Technology Information) provides HPC(High Performance Computing) service to users of university, institute, government, affiliated organization, company and so on. The NURION, supercomputer that launched its official service on Jan. 1, 2019, is the fifth supercomputer established by the KISTI. The NURION has 25.7 petaflops computation performance. Understanding how supercomputing services are used and how researchers are using is critical to system operators and managers. It is central to monitor and analysis network traffic. In this paper, we briefly introduce the NURION system and supercomputing service network with security configuration. And we describe the monitoring system that checks the status of supercomputing services in real time. We analyze inbound/outbound traffics and abnormal (attack) IP addresses data that are collected in the NURION supercomputing service network for 11 months (from January to November 1919) using time series and correlation analysis method.

Expansion of Sample OD Based on Probe Vehicle Data in a Ubiquitous Environment (유비쿼터스 환경의 프로브 차량 정보를 활용한 표본 OD 전수화 (제주시 시범사업지역을 대상으로))

  • Jeong, So-Young;Baek, Seung-Kirl;Kang, Jeong-Gyu
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.123-133
    • /
    • 2008
  • Information collection systems and applications in a ubiquitous environment has emerged as a leading issue in transportation and logistics. A productive application example is a traffic information collection system based on probe vehicles and wireless communication technology. Estimation of hourly OD pairs using probe OD data is a possible target. Since probe OD data consists of sample OD pairs, which vary over time and space, computation of sample rates of OD pairs and expansion of sample OD pairs into static OD pairs is required. In this paper, the authors proposed a method to estimate sample OD data with probe data in Jeju City and expand those into static OD data. Mean absolute percentage difference (MAPD) error between observed traffic volume and assigned traffic volume was about 22.9%. After removing abnormal data, MAPD error improved to 17.6%. Development of static OD estimation methods using probe vehicle data in a real environment is considered the main contribution of this paper.

Deep Learning-based Vehicle Anomaly Detection using Road CCTV Data (도로 CCTV 데이터를 활용한 딥러닝 기반 차량 이상 감지)

  • Shin, Dong-Hoon;Baek, Ji-Won;Park, Roy C.;Chung, Kyungyong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.1-6
    • /
    • 2021
  • In the modern society, traffic problems are occurring as vehicle ownership increases. In particular, the incidence of highway traffic accidents is low, but the fatality rate is high. Therefore, a technology for detecting an abnormality in a vehicle is being studied. Among them, there is a vehicle anomaly detection technology using deep learning. This detects vehicle abnormalities such as a stopped vehicle due to an accident or engine failure. However, if an abnormality occurs on the road, it is possible to quickly respond to the driver's location. In this study, we propose a deep learning-based vehicle anomaly detection using road CCTV data. The proposed method preprocesses the road CCTV data. The pre-processing uses the background extraction algorithm MOG2 to separate the background and the foreground. The foreground refers to a vehicle with displacement, and a vehicle with an abnormality on the road is judged as a background because there is no displacement. The image that the background is extracted detects an object using YOLOv4. It is determined that the vehicle is abnormal.

A Study on the Estimation of Ship Location Information in the Intelligent Maritime Traffic Information System (지능형 해상교통정보시스템의 선박 위치 정보 추정 연구)

  • Deuk-Jae Cho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.313-314
    • /
    • 2022
  • The intelligent maritime traffic information service provides a service to prevent collisions and stranding of ships based on the location information of ships periodically collected from ship equipment such as LTE-Maritime transceivers and AIS installed on ships. provided in real time. However, the above service may reduce the reliability of ship location information because GPS location information for measuring the ship's location may be cut off during transmission through LTE-Maritime or AIS networks, or phenomena such as location jumps and delays may occur. This study aims to estimate reliable position information to some extent even in an abnormal section through ship position prediction based on the existing received position information using the Kalman filter, which is an optimal estimation filter based on probability.

  • PDF

Performance Comparison of Machine Learning Algorithms for Network Traffic Security in Medical Equipment (의료기기 네트워크 트래픽 보안 관련 머신러닝 알고리즘 성능 비교)

  • Seung Hyoung Ko;Joon Ho Park;Da Woon Wang;Eun Seok Kang;Hyun Wook Han
    • Journal of Information Technology Services
    • /
    • v.22 no.5
    • /
    • pp.99-108
    • /
    • 2023
  • As the computerization of hospitals becomes more advanced, security issues regarding data generated from various medical devices within hospitals are gradually increasing. For example, because hospital data contains a variety of personal information, attempts to attack it have been continuously made. In order to safely protect data from external attacks, each hospital has formed an internal team to continuously monitor whether the computer network is safely protected. However, there are limits to how humans can monitor attacks that occur on networks within hospitals in real time. Recently, artificial intelligence models have shown excellent performance in detecting outliers. In this paper, an experiment was conducted to verify how well an artificial intelligence model classifies normal and abnormal data in network traffic data generated from medical devices. There are several models used for outlier detection, but among them, Random Forest and Tabnet were used. Tabnet is a deep learning algorithm related to receive and classify structured data. Two algorithms were trained using open traffic network data, and the classification accuracy of the model was measured using test data. As a result, the random forest algorithm showed a classification accuracy of 93%, and Tapnet showed a classification accuracy of 99%. Therefore, it is expected that most outliers that may occur in a hospital network can be detected using an excellent algorithm such as Tabnet.

Autoencoder-Based Anomaly Detection Method for IoT Device Traffics (오토인코더 기반 IoT 디바이스 트래픽 이상징후 탐지 방법 연구)

  • Seung-A Park;Yejin Jang;Da Seul Kim;Mee Lan Han
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.281-288
    • /
    • 2024
  • The sixth generation(6G) wireless communication technology is advancing toward ultra-high speed, ultra-high bandwidth, and hyper-connectivity. With the development of communication technologies, the formation of a hyper-connected society is rapidly accelerating, expanding from the IoT(Internet of Things) to the IoE(Internet of Everything). However, at the same time, security threats targeting IoT devices have become widespread, and there are concerns about security incidents such as unauthorized access and information leakage. As a result, the need for security-enhancing solutions is increasing. In this paper, we implement an autoencoder-based anomaly detection model utilizing real-time collected network traffics in respond to IoT security threats. Considering the difficulty of capturing IoT device traffic data for each attack in real IoT environments, we use an unsupervised learning-based autoencoder and implement 6 different autoencoder models based on the use of noise in the training data and the dimensions of the latent space. By comparing the model performance through experiments, we provide a performance evaluation of the anomaly detection model for detecting abnormal network traffic.