Condition monitoring technology is of great importance for the maintenance of complex machinery in view of its early monitoring of the abnormal condition and the protection against failure. Several methods have been used for the detection of failure of journal bearings, one of the main elements of mechanical system. The methods most frequently used are vibration and temperature monitoring, but these are unable to monitor the wear conditions exactly. In this study, an ultrasonic measument method, one of the non-destructive testing methods, was introduced as the monitoring technology. Furtermore a pattem recognition method was applied to analyze the ultrasonic signal. The monitoring system using the pattern recognition method is composed of digital signal processing units and uses Hamming net algorithm for the recognition of ultrasonic waves. From the journal bearing wear test, the occurrence of adhesive wear of the white metal in rubbing contact with the shaft was exactly detected by this system, and the wear status of the journal bearing was monitored by measuring the wear thickness.
수면 중 돌연사는 급성 심근경색 등의 이유로 노인 뿐 만 아니라 영아나 20~40대와 같은 비교적 젊은 층에서도 종종 발생하고 있다. 수면 중 돌연사는 미리 예측하기 어려우므로 이를 방지하기 위해서는 수면 모니터링이 필요하다. 본 논문에서는 별도의 센서 부착 없이도 수면 중 돌연사 감지를 할 수 있는 새로운 비디오 분석 방법을 제안한다. 제안하는 비디오 분석 방법에서는 호흡에 의한 미세 움직임을 감지하기 위해 모션 증폭 기법을 적용한다. 모션 증폭을 적용했는데도 프레임 간 차이가 거의 없는 경우, 모션이 존재하지 않아 돌연사 가능성이 있는 것으로 판단한다. 수면 중인 아기를 촬영한 비디오 두 편에 대해 모션 증폭을 적용한 결과, 호흡에 의한 미세 모션을 정확하게 감지하였고, 이는 수면 상태와 돌연사를 구분하는데 유용할 것으로 판단되었다. 제안하는 비디오 분석 방법은 신체에 센서 부착을 필요로 하지 않으므로 아기를 키우는 가정이나 독신 가정에서 편리하게 활용될 수 있을 것이다.
In this work a method to detect the vibrational peak and to decide the vibrational mode of detected peak for core internal vibration monitoring system which is particularly concerned on the core support barrel (CSB) and fuel assemblies is developed. Flow induced vibration and aging process in the reactor internals cause unsoundness of the internal structure. In order to monitor the vibrational status of core internal, signals from the ex-core neutron detectors are transformed into frequency domain. By analyzing transformed frequency domain signal, an analyst can acquire the information on the vibrational characteristics of the structures, i.e., vibration frequencies of each component, vibrational level, modes of vibration, and the causes of the abnormal vibration, if any. This study is focused on the development of the automated monitoring system. Several methods are surveyed to define the peaks in power spectrum and fuzzy theory is used to automatic detection of the vibrational peaks. Fuzzy algorithm is adopted to define the modes of vibration using the peak values from fuzzy peak recognition, phase spectrum, and coherence spectrum.
In order to make best use of NC machine tools with minimal labor costs, they need to be in operation 24 hours a day without being attended by human operators except for setup and tool changes. Thus, unattended machining is becoming a dream of every modern machine shop. However, without a proper mechanism for real-time monitoring of the machining processes, unattended machine could lead to a disaster. Investigated in this paper are ways to using PC camera as a real-time monitoring system for unattended NC milling operations. This study defined five machining states READY, NORMAL MACHINING, ABNORMAL MACHINING, COLLISION and END-OF-MACHINING and modeled them with DEVS (discrete event system) formalism. An image change detection algorithm has been developed to detect the table movements and a flame and smoke detection algorithm to detect unstable cutting process. Spindle on/off and cutting status could be successfully detected from the sound signals. Initial experimentation shows that the PC camera could be used as a reliable monitoring system for unattended NC machining.
Internet of Things (IoT) is considered the future network to support wireless communications. To realize an IoT network, sufficient spectrum should be allocated for the rapidly increasing IoT devices. Through cognitive radio, unlicensed IoT devices exploit cooperative spectrum sensing (CSS) to opportunistically access a licensed spectrum without causing harmful interference to licensed primary users (PUs), thereby effectively improving the spectrum utilization. However, an open access cognitive IoT allows abnormal IoT devices to undermine the CSS process. Herein, we first establish a hard-combining attack model according to the malicious behavior of falsifying sensing data. Subsequently, we propose a weighted sequential hypothesis test (WSHT) to increase the PU detection accuracy and decrease the sampling number, which comprises the data transmission status-trust evaluation mechanism, sensing data availability, and sequential hypothesis test. Finally, simulation results show that when various attacks are encountered, the requirements of the WSHT are less than those of the conventional WSHT for a better detection performance.
International Journal of Computer Science & Network Security
/
제21권6호
/
pp.89-100
/
2021
Smart Grid Network (SGN) is a next generation electrical power network which digitizes the power distribution grid and achieves smart, efficient, safe and secure operations of the electricity. The backbone of the SGN is information communication technology that enables the SGN to get full control of network station monitoring and analysis. In any network where communication is involved security is essential. It has been observed from several recent incidents that an adversary causes an interruption to the operation of the networks which lead to the electricity theft. In order to reduce the number of electricity theft cases, companies need to develop preventive and protective methods to minimize the losses from this issue. In this paper, we have introduced a machine learning based SVM method that detects malicious nodes in a smart grid network. The algorithm collects data (electricity consumption/electric bill) from the nodes and compares it with previously obtained data. Support Vector Machine (SVM) classifies nodes into Normal or malicious nodes giving the statues of 1 for normal nodes and status of -1 for malicious -abnormal-nodes. Once the malicious nodes have been detected, we have done a trust evaluation based on the nodes history and recorded data. In the simulation, we have observed that our detection rate is almost 98% where the false alarm rate is only 2%. Moreover, a Trust value of 50 was achieved. As a future work, countermeasures based on the trust value will be developed to solve the problem remotely.
In general, power demand is on an increasing trend as industries have made rapid strides. Power transformer is the most important equipment in substation for this reason. Transformer trobles go with blackout, expensive repair costs and huge economic losses. Therefore it is important to find the quick detection of incipient fault for the least losses. There have been gas, partial discharge, temperature, OLTC, fan and pump diagnosis for preventive techniques by present. Specially gas analysis has been adapted for a long time and proved as confident method. In this paper, we analysed the fault causes of used power transformer. The insulation faults was occupied 40% of inquired 152 faults from 1991 to 2000. This study presents the developed algorithm and expert system for finding abnormal status within transformer. We used the Element Expert tool developed Neuron DATA Inc.
How accurately reproducible energy is delivered to the wafer in the process of making thin films using PE-CVD (Plasma enhanced chemical vapor deposition) during the semiconductor process. This is the most important technique, and most of the reaction on the wafer surface is made by thermal energy. In this study, we studied the method of monitoring the change of thermal energy transferred to the wafer surface by monitoring the temperature change according to the change of the thin film formed on the showerhead facing the wafer. Through this research, we could confirm the monitoring of wafer thin-film which is changed due to abnormal operation and accumulation of equipment, and we can expect improvement of semiconductor quality and yield through process reproducibility and equipment status by real-time monitoring of problem of deposition process equipment performance.
Asian Dust is a meteorological phenomenon that sand particles are raised from the arid and semi-arid regions-Taklamakan Desert, Gobi Desert and Inner Mongolia in China-and transported by westerlies and deposited on the surface. Asian dust results in a negative effect on human health as well as environmental, social and economic aspects. For monitoring of Asian Dust, Korea Meteorological Administration operates 29 stations using a continuous ambient particulate monitor. Kim et al. (2016) developed an automatic quality check (AQC) algorithm for objective and systematic quality check of observed PM10 concentration and evaluated AQC with results of a manual quality check (MQC). The results showed the AQC algorithm could detect abnormal observations efficiently but it also presented a large number of false alarms which result from valid error check. To complement the deficiency of AQC and to develop an AQC system which can be applied in real-time, AQC has been modulated. Based on the analysis of instrument status codes, valid error check process was revised and 6 status codes were further considered as normal. Also, time continuity check and spike check were modified so that posterior data was not referred at inspection time. Two-year observed PM10 concentration data and corresponding MQC results were used to evaluate the modulated AQC compared to the original AQC algorithm. The results showed a false alarm ratio decreased from 0.44 to 0.09 and the accuracy and the probability of detection were conserved well in spite of the exclusion of posterior data at inspection time.
기존의 전자금융 이상거래 분석 및 탐지기술은 전자금융 업무시스템으로부터 발생된 대량의 전자금융 거래로그를 빅데이터 기반의 저장 공간으로 수집하고, 기존 고객의 거래패턴 프로 파일링 및 다양한 사고거래를 분석한 탐지룰을 이용하여 비정상적인 이상거래를 실시간 또는 준 실시간으로 탐지하고 있다. 하지만, 정작 피해금액 규모 및 사회적 파급효과가 큰 금융회사 내부자의 전자금융 부정접속 시도 및 내부 통제환경의 우회를 통한 전자금융 이용자의 중요정보 탈취와 같은 적극적인 분석은 제대로 이루어지지 못하고 있다. 이에 본 논문에서는 금융회사의 전자금융 보안프로그램에 대한 관리 실태를 분석하고, 관리상 취약점을 악용한 내부자의 보안통제 우회사고 가능성 도출한다. 또한, 이를 효율적으로 대응하기 위하여 기존 전자금융 이상거래탐지시스템에 더불어 내부자 위협모니터링과 연계한 포괄적인 전자금융 보안관리 환경을 제시하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.