• Title/Summary/Keyword: Ablation Mode

Search Result 27, Processing Time 0.023 seconds

Ablative Outcomes of Various Energy Modes for No-Touch and Peripheral Tumor-Puncturing Radiofrequency Ablation: An Ex Vivo Simulation Study

  • Dong Ik Cha;Min Woo Lee;Kyoung Doo Song;Seong Eun Ko;Hyunchul Rhim
    • Korean Journal of Radiology
    • /
    • v.23 no.2
    • /
    • pp.189-201
    • /
    • 2022
  • Objective: To compare the outcomes of radiofrequency ablation (RFA) using dual switching monopolar (DSM), switching bipolar (SB), and combined DSM + SB modes at two different interelectrode distances (25 and 20 mm) in an ex vivo study, which simulated ablation of a 2.5-cm virtual hepatic tumor. Materials and Methods: A total of 132 ablation zones were created (22 ablation zones for each protocol) using three separable clustered electrodes. The performances of the DSM, SB, and combined DSM + SB ablation modes were compared by evaluating the following parameters of the RFA zones at two interelectrode distances: shape (circularity), size (diameter and volume), peritumoral ablative margins, and percentages of the white zone at the midpoint of the two electrodes (ablative margin at midpoint, AMm) and in the electrode path (ablative margin at electrode path, AMe). Results: At both distances, circularity was the highest in the SB mode, followed by the DSM + SB mode, and was the lowest in the DSM mode. The circularity of the ablation zone showed a significant difference among the three energy groups (p < 0.001 and p = 0.002 for 25-mm and 20-mm, respectively). All size measurements, AMm, and AMe were the greatest in the DSM mode, followed by the DSM + SB mode, and the lowest were with the SB mode (all statistically significant). The white zone proportion in AMm and AMe were the greatest in the SB mode, followed by the DSM + SB mode and DSM in general. Conclusion: DSM and SB appear to be complementary in creating an ideal ablation zone. RFA with the SB mode can efficiently eradicate tumors and create a circular ablation zone, while DSM is required to create a sufficient ablative margin and a large ablation zone.

The effect of working parameters on removal of casting gold alloy using a piezoelectric ultrasonic scaler with scaler tip in vitro (압전방식 초음파 치석제거기의 작업조건에 따른 치과주조용 합금의 삭제에 관한 연구)

  • Cha, Kuk-Bong;Kim, Won-Kyung;Lee, Young-Kyoo;Kim, Young-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.2
    • /
    • pp.139-148
    • /
    • 2009
  • Purpose: Ultrasonic scalers have been widely used for removing biofilm which is considered as major etiologic factor of periodontal disease. The purpose of this study was to evaluate the effect of working parameters of piezoeletric ultrasonic scaler with scaler tip (No. 1 tip) on casting gold alloy removal. Methods: Type III dental casting gold alloy (Firmilay$^{circledR}$, Jelenko Inc, CA, USA) was used as substitute for tooth substance. Piezoeletric ultrasonic scaler and No.1 scaler tip (P-Max$^{circledR}$, Satelec, France) were selected. The selected working parameters were mode (P mode, S mode), power setting (2, 4, 8) and lateral force (0.5 N, 1.0 N, 2.0 N). The effect of working parameters was evaluated in terms of ablation depth, ablation width and ablation area. Results: Mode influenced ablation depth and ablation area. Power also influenced ablation depth and ablation area. Especially, Power 2 and power 8 showed statistically significant difference. Lateral force had influence on ablation width, and 0.5 N resulted significant increase compared with 1.0 N and 2.0 N. Ablation depth was influenced by mode, power and lateral force and defect width was influenced by lateral force. Ablation area was influenced by mode and power. Conclusions: It can be concluded that the use of piezoelectric ultrasonic scaler with No. 1 scaler tip in S mode and high power may result in significant loss of tooth substance.

Analytical Study on Performance Evaluation of Superdetonative Mode Ram Accelerator (초폭굉 모드 램가속기의 성능해석에 대한 이론적 연구)

  • Sung, Kunmin;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • An analytical study on performance evaluation of superdetonative mode ram accelerator was conducted for understanding the experimental result. The quasi-one dimensional continuum, momentum, energy equations were solved under the assumption of inviscid flow. It would be noticeable that experimental result could be analytically simulated with the assumptions of inlet shockwave, temperature dependent specific heat, and additional aluminum combustion due to ablation of aluminum projectile in superdetonative operation mode. The acceleration of ram accelerator was comparable to experimental result with the consideration of the additional aluminum combustion energy by ablation of projectile. As result, the experimental result with the aluminum projectile could be affected by heat of aluminum.

Exogenous-Water-Induced Thermal and Mechanical Effects on Dental Hard Tissue by the Er:YAG Laser: Free-running Mode (외부의 물과 Er:YAG Laser의 작용에 의한 Dental Hard Tissue에서의 열과 역학적 효과: Free-running 방식)

  • Kwon, Y.H.;Frederickson, C.J.;Motamedi, M.;Rastegar, S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.380-384
    • /
    • 1997
  • This study was performed to understand the exogenous-water-drop induced thermomechanical effect on the tooth in the free-running Er:YAG laser mode for the proper use of water as a laser energy absorber and coolant in dentistry. The ree-running Er:YAG laser was used in the dental hard tissue ablation study. A Microjet system was employed to dispense precise water drops. Ablation rate, recoil momentum, and temperature rise in the pulp cavity were measured with and without an exogenous water drop on the tooth surface. Exogenous water enhanced ablation rate in the thick tooth in which the ablation rate on the dry surface does not increase linearly but shows plateau. Optimal exogenous water volume was shifted from 2 nl to 4 nl as the laser energy was increased from 48 mJ to 145 mJ. The magnitude of the recoil momentum was increased as the volume of exogenous water increased. The results of this study suggest that we must pay attention to the recoil momentum or recoil pressure study or the optimal and safe usage of water in the dental treatment because these mechanical effects depend on the volume of exogenous water on the tooth surface.

  • PDF

2 D Computer Simulation of Laser-Generated Ultrasonic Wave (레이저 여기 초음파의 2차원 컴퓨터 시뮬레이션)

  • Kim, Gyeong-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1847-1853
    • /
    • 2000
  • A computer simulation technique for 2-dimensional laser generated ultrasonic waves was developed for visualization and investigation of ultrasonic propagation in solids. The technique is similar to a finite difference method (FDM) and a mass-particle model method, but uses a new nodal calculation method based on fundamental consideration of an elastic wave equation. By this method, the propagation behavior oflaser generated ultrasonic wave in thermoelastic and ablation mode is visualized and shows good agreement with previous experimental result or the numerical analysis result by Green function.

Radiofrequency Ablation Using a Separable Clustered Electrode for the Treatment of Hepatocellular Carcinomas: A Randomized Controlled Trial of a Dual-Switching Monopolar Mode Versus a Single-Switching Monopolar Mode

  • Jae Won Choi;Jeong Min Lee;Dong Ho Lee;Jung-Hwan Yoon;Yoon Jun Kim;Jeong-Hoon Lee;Su Jong Yu;Eun Ju Cho
    • Korean Journal of Radiology
    • /
    • v.22 no.2
    • /
    • pp.179-188
    • /
    • 2021
  • Objective: This study aimed to prospectively compare the efficacy, safety, and mid-term outcomes of dual-switching monopolar (DSM) radiofrequency ablation (RFA) to those of conventional single-switching monopolar (SSM) RFA in the treatment of hepatocellular carcinoma (HCC). Materials and Methods: This single-center, two-arm, parallel-group, randomized controlled study was approved by the Institutional Review Board. Written informed consent was obtained from all patients upon enrollment. A total of 80 patients with 94 HCC nodules were randomized into either the DSM-RFA group or SSM-RFA group in a 1:1 ratio, using a blocked randomization method (block size 2). The primary endpoint was the minimum diameter of the ablation zone per unit time. The secondary endpoints included other technical parameters, complication rate, technique efficacy, and 2-year clinical outcomes. Results: Significantly higher ablation energy per unit time was delivered to the DSM-RFA group than to the SSM-RFA group (1.7 ± 0.2 kcal/min vs. 1.2 ± 0.3 kcal/min; p < 0.001). However, no significant differences were observed between the two groups for the analyzed variables, including primary endpoint, regarding size of the ablation zone and ablation time. Major complication rates were 4.9% in the DSM-RFA group and 2.6% in the SSM-RFA group (p = 1.000). The 2-year local tumor progression (LTP) rates of the HCC nodules treated using DSM-RFA and SSM-RFA were 8.5% and 4.7%, respectively (p = 0.316). The 2-year LTP-free survival rates of patients in the DSM-RFA and SSM-RFA groups were 90.0% and 94.4%, respectively (p = 0.331), and the 2-year recurrence-free survival rates were 54.9% and 75.7%, respectively (p = 0.265). Conclusion: Although DSM-RFA using a separable clustered electrode delivers higher ablation energy than SSM-RFA, its effectiveness failed to show superiority over SSM-RFA in the treatment of HCC.

Magnetic Properties of SmCo Thin Films Grown by Using a Nd-YAG Pulsed Laser Ablation Method (Nd-YAG Pulsed Laser Ablation법으로 제작한 SmCo계 박막의 자기특성)

  • 김상원;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.1
    • /
    • pp.30-36
    • /
    • 2000
  • SmCo films were deposited on Si(100) substrate by a Nd-YAG pulsed laser ablation of the targets of Sm$\_$100-x/Co$\_$x/ (73$\leq$x$\leq$93) at the substrate temperature of 600∼700$\^{C}$ and the laser beam energy density of Q switching mode or fixed Q mode. The magnetic properties of the films obtained from the Q switching mode exhibited a 4 $\pi$ Ms of 5200∼7700 Gauss, iHc of 190-250 Oe, and 4$\pi$M$\_$r//4$\pi$M$\_$s/ of 0.4∼0.74, respectively, while the fixed Q mode gave the magnetic properties of corresponding films of a 4$\pi$M$\_$r//4$\pi$M$\_$s/ = 0.32∼0.91 and iHc of 430-6290 Oe, respectively. The fixed Q mode gave the better magnetic properties of the SmCo films which seems to be due to a formation of magnetically hard minor phases in droplet of Sm-rich intermetallics. However, the resultant rough surface of the SmCo films is a problem to be solved by a continued study.

  • PDF

Geometric Optimization of a Mathematical Model of Radiofrequency Ablation in Hepatic Carcinoma

  • Wang, Kai-Feng;Pan, Wei;Wang, Fei;Wang, Gao-Feng;Madhava, Pai;Pan, Hong-Ming;Kong, De-Xing;Liu, Xiang-Guan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6151-6158
    • /
    • 2013
  • Radio frequency ablation (RFA) is an effective means of achieving local control of liver cancer. It is a particularly suitable mode of therapy for small and favorably located tumors. However, local progression rates are substantially higher for large tumors (>3.0 cm). In the current study, we report on a mathematical model based on geometric optimization to treat large liver tumors. A database of mathematical models relevant to the configuration of liver cancer was also established. The specific placement of electrodes and the frequency of ablation were also optimized. In addition, three types of liver cancer lesion were simulated by computer guidance incorporating mathematical models. This approach can be expected to provide a more effective and rationale mechanism for employing RFA in the therapy of hepatic carcinoma.

Fabrication of Superconducting Dual Mode Resonator using Laser Ablation (레이저 어블레이션에 의한 초전도 이중모드 공진기 제작)

  • Park, Joo-Hyung;Yang, Seung-Ho;Lee, Sang-Yeol;Ahn, Dal;Sok, Jung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.41-44
    • /
    • 1998
  • Dual mode resonators were fabricated using high temperature superconductor. The deposited material was $Y_1Ba_2Cu_3O_{7-x}$(YBCO) on MgO(100) substrate using pulsed laser deposition. Dual mode resonators were patterned by standard photolithography process and wet etching. At the back-side of the substrate, the ground plane with the metal layer of Ti and Ag was fabricated. The transition temperatures of YBCO films were 85-88 K, and network analyzer was used for testing the performance of the resonators. The input/output feedline angles of each resonator were $60^{\circ}$and $100^{\circ}$. The resonant frequency of resonators was 10 GHz. In this paper, dual mode resonator was fabricated for the application of satellite communication.

  • PDF

Transient Simulations of Concrete Ablation due to a Release of Molten Core Material (방출된 노심용융 물질에 의한 콘크리트 침식 천이 모의)

  • Kim, H.Y.;Park, J.H.;Kim, H.D.;Kim, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3491-3496
    • /
    • 2007
  • If a molten core is released from a reactor vessel into a reactor cavity during a severe accident, an important safety issue of coolability of the molten core from top-flooding and concrete ablation due to a molten core concrete interaction (MCCI) is still unresolved. The released molten core debris would attack the concrete wall and basemat of the reactor cavity, which will lead to inevitable concrete decompositions and possible radiological releases. In a OECD/MCCI project scheduled for 4 years from 2002. 1 to 2005. 12, a series of tests were performed to secure the data for cooling the molten core spread out at the reactor cavity and for the 2-D long-term core concrete interaction (CCI). The tests included not only separate effect tests such as a melt eruption, water ingression, and crust failure tests with a prototypic material but also 2-D CCI tests with a prototypic material under dry and flooded cavity conditions. The paper deals with the transient simulations on the CCI-2 test by using a severe accident analysis code, CORQUENCH, which was developed at Argonne National Laboratory (ANL). Similar simulations had been already per for me d by using MELCOR 1.8.5 code. Unlike the MELCOR 1.8.5, the CORQUENCH includes a melt eruption mode I and a newly developed water ingression model based on the water ingression tests under the OECD/MCCI project. In order to adjust the geometrical differences between the CCI-2 test (rectangular geometry) and the simulations (cylindrical geometry), the same scaling methodology as used in the MELCOR simulation was applied. For the direct comparison of the simulation results, the same inputs for the MELCOR simulation were used. The simulation results were compared with the previous results by using MELCOR 1.8.5.

  • PDF