• 제목/요약/키워드: Abiotic stress tolerance

검색결과 141건 처리시간 0.026초

Improvement of Abiotic Stress Resilience for Stable Rice Production

  • Dongjin Shin;Hyunggon Mang;Jiyun Lee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.13-13
    • /
    • 2022
  • Recently, stable crop production is threatened by the effects of climate change. In particular, it is difficult to consistently maintain agricultural policies due to large price fluctuations depending on the difference in total domestic rice production from year to year. For stable rice production amid changes in the crop growing environment, development of varieties with improved disease resistance and abiotic stress stability is becoming more important. In here, drought and cold tolerant trait have been studied. First, for the development of drought tolerant varieties, we analyzed which agricultural traits are mainly affected by domestic drought conditions. As a result, it was observed that drought caused by the lack of water during transplanting season inhibits the development of the number of tiller and reduces the yield. 'Samgang' was selected as a useful genetic resource with strong drought tolerant and stable tiller number development even under drought conditions by phenotype screening. Three of drought tolerant QTLs were identified using doubled haploid (DH) population derived from a cross between Nacdong and Samgang, a drought sensitive and a tolerant, respectively. Among these QTLs, when qVDT2 and qVDTl1 were integrated, it was investigated that the tiller number development was relatively stable in the rainfed paddy field conditions. It is known that the high-yielding Tongil-type cultivars are severely affected by cold stress throughout the entire growth stage. In this study, we established conditions that can test the cold tolerance phenotype with alternate temperature to treat low temperatures in indoor growth conditions similar to those in field conditions at seedling stage. Three cold tolerant QTLs were explored using population derived from a cross between Hanareum2 (cold sensitive variety, Tongil-type) and Unkwang (cold tolerant variety, Japonica). Among these QTLs, qSCT12 showed strong cold tolerant phenotype, and when all of three QTLs were integrated, it was investigated that cold tolerant score was relatively similar to its donor parent, Unkwang, in our experimental conditions. We are performing that development of new variety with improved cold tolerant through the introduction of these QTLs.

  • PDF

Identification of Drought Tolerant Genotypes by Evaluating Morpho-physiological Traits in Pepper

  • Kyu Kyu Thin;Alebel Mekuriaw;Hyerim Do;Inhwa Yeam;Je Min Lee
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.29-29
    • /
    • 2022
  • The fast-changing climatic conditions make plants to be vulnerable to many abiotic stresses. Drought stress is one of the limiting factors that affect pepper production in water deficient regions. It affects plant growth and development by altering physiological, morphological, and metabolic processes. Breeding drought tolerant varieties is one of the mitigation strategies to overcome the ever increasing drought disaster. Hence, screening of new drought tolerant pepper genotypes is essential. The current study was aimed to identify new drought tolerant genotypes among the collection of pepper genetic resources. In total, 70 pepper genotypes were screened for drought tolerance after exposure to drought stress condition. The pepper genotypes were classified as highly tolerant, intermediate, or severely sensitive to drought stress based on the phenotypic analysis. Consequently, 13 genotypes significantly exhibited higher recovery rate after drought stress and were classified as highly tolerant. Comparative analysis of morphological and physiological parameters and expression of drought responsive genes between tolerant and susceptible pepper genotypes will be presented and discussed. The identified tolerant genotypes will be useful resources for breeding drought tolerant pepper cultivars.

  • PDF

배추에서 염 저항성 관련 유전자, BrSSR의 기능 검정 및 발현 네트워크 분석 (Characterization and Gene Co-expression Network Analysis of a Salt Tolerance-related Gene, BrSSR, in Brassica rapa)

  • 유재경;이기호;박지현;박영두
    • 원예과학기술지
    • /
    • 제32권6호
    • /
    • pp.845-852
    • /
    • 2014
  • 다양한 비생물적 스트레스 중 토양 염 집적은 식물의 광합성 효율, 생장 및 수확량의 감소를 초래한다. 최근 염 저항성 향상을 위한 많은 유전자들이 보고되고 있다. 본 연구의 목적은 형질전환 배추를 이용하여 아직 기능이 밝혀져 있지 않지만 완전장이 보고된 Brassica rapa Salt Stress Resistance(BrSSR) 유전자의 기능을 검정하는 것이다. BrSSR의 생리적 역할을 분석하기 위해, BrSSR의 과발현 vector인 pSL94 vector를 이용하여 내혼계 배추('CT001')를 형질전환하였다. Quantitative real-time RT-PCR 분석에서 형질전환체의 BrSSR 발현량은 대조군 대비 2.59배까지 증가하였다. 한편, 염 처리 후 표현형 분석에서 BrSSR이 과발현된 형질전환체들이 정상적인 생장을 보여줌으로써 염 스트레스에 내성을 가지는 것을 확인할 수 있었다. Microarray 분석을 통해 구축된 염 스트레스 저항성 관련 유전자들의 발현 네트워크 상에서 BrSSR은 기존에 염 저항성 관련 유전자로 보고되어 있는 ERD15(AT2G41430), protein containing PAM2(AT4G14270), GABA-T(AT3G22200)와 매우 밀접하게 연결되어 있는 것으로 분석되었다. 위 결과들을 바탕으로 BrSSR은 염 스트레스 발생 시 식물의 생장 및 저항성에 관련된 중요한 역할을 하는 것으로 판단된다.

Arsenic-Induced Differentially Expressed Genes Identified in Medicago sativa L. roots

  • Rahman, Md. Atikur;Lee, Sang-Hoon;Kim, Ki-Yong;Park, Hyung Soo;Hwang, Tae Young;Choi, Gi Jun;Lee, Ki-Won
    • 한국초지조사료학회지
    • /
    • 제36권3호
    • /
    • pp.243-247
    • /
    • 2016
  • Arsenic (As) is a toxic element that easily taken up by plants root. Several toxic forms of As disrupt plant metabolism by a series of cellular alterations. In this study, we applied annealing control primer (ACP)-based reverse transcriptase PCR (polymerase chain reaction) technique to identify differentially expressed genes (DEGs) in alfalfa roots in response to As stress. Two-week-old alfalfa seedlings were exposed to As treatment for 6 hours. DEGs were screened from As treated samples using the ACP-based technique. A total of six DEGs including heat shock protein, HSP 23, plastocyanin-like domain protein162, thioredoxin H-type 1 protein, protein MKS1, and NAD(P)H dehydrogenase B2 were identified in alfalfa roots under As stress. These genes have putative functions in abiotic stress homeostasis, antioxidant activity, and plant defense. These identified genes would be useful to increase As tolerance in alfalfa plants.

The Function of ArgE Gene in Transgenic Rice Plants

  • Guo, Jia;Seong, Eun-Soo;Cho, Joon-Hyeong;Wang, Myeong-Hyeon
    • 한국자원식물학회지
    • /
    • 제20권6호
    • /
    • pp.524-529
    • /
    • 2007
  • We carried out to study the function of ArgE in transgenic rice plants, which were confirmed by PCR analysis and hygromycin selection. Transgenic rice plants were with selectable marker gene(HPT) inserted in genome of the rice. Southern analysis with hpt probe confirmed by two restriction enzymes that copy numbers of the selectable gene was introduced into the plant genome. We displayed that the relationship between drought stress and ArgE gene with the overexpressing rice plants. From this result, we observed that the degree of leaves damage has no difference in control and transgenic lines. The total RNAs were extracted from 6 weeks-seedling in normal condition in order to examine their expression levels with ArgE-overexpressed transgenic rice. In particular, expression patterns of genes encoding enzymes involved in abiotic stress, including drought and salt stresses. OsGF14a and OsSalt were investigated by reverse transcription-PCR(RT-PCR). Expression levels of the OsSalt gene decreased significantly in transgenic rice plants compared to control plant. However, ion leakage measurement did not demonstrate any leaves damage change between control and ArgE transgenic plants exposure to mannitol treatment. These results suggest that expression of the ArgE is not involved in tolerance for drought stress in rice but may playa role of signaling networks for salt-induced genes.

Genetic Distances Among Rice Mutant Genotypes Assessed by AFLP and Aluminum Tolerance-Related Traits

  • Malone, Emilia;Kopp, Mauricio Marini;Malone, Gaspar;Branco, Juliana Severo Castelo;Carvalho, Fernando Iraja Felix;Oliveira, Antonio Costa de
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권2호
    • /
    • pp.106-111
    • /
    • 2007
  • Increasing genetic variability with mutagenic agents has been broadly employed in plant breeding because it has the potential to alter one or more desirable traits. In this study, a molecular analysis assessed by Amplified Fragment Length Polymorphisms(AFLPs) and a morphological analysis based on seedlings subjected to aluminum stress were compared. Also, an analysis of allelic frequencies was performed to observe unique alleles present in the pool. Genetic distances ranging from 0.448 to 0.953 were observed, suggesting that mutation inducing was effective in generating variability. The genetic distances based on morphological data ranged from 0(genotypes 22 and 23) to 30.38(genotypes 15 and 29). In the analysis of allelic frequency, 13 genotypes presented unique alleles, suggesting that mutation inducing was also targeting unique sites. Mutants with good performance under aluminum stress(9, 15, 18 and 27) did not form the same clusters when morphological and molecular analyses were compared, suggesting that different genomic regions may be responsible for their better performance.

  • PDF

Positive Regulator, a Rice C3H2C3-type RING Finger Protein H2-3(OsRFPH2-3), in Response to Salt Stress

  • Min Seok Choi;Cheol Seong Jang
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2023년도 춘계학술대회
    • /
    • pp.156-156
    • /
    • 2023
  • Salinity is a major abiotic stress that limits rice productivity in many regions of the world. In order to develop salt stress tolerant rice plants, genetic engineering is a promising approach. We characterized the molecular function of rice C3H2C3 as a really interesting new gene (RING). Oryza sativa RING finger protein H2-3 (OsRFPH2-3) was highly expressed in 100 mM NaCl. To identify the localization of OsRFPH2-3, we fused vectors that include C-terminal GFP protein (35S;;OsRFPH2-3-GFP). OsRFPH2-3 was expressed in the nucleus in rice protoplasts. An in vitro ubiquitin assay demonstrated that OsRFPH2-3 possessed E3-ubiquitin ligase activity. However, the mutated OsRFPH2-3 were not possessed any E3-ubiquitin ligase activity. Under salinity conditions, OsRFPH2-3-overexpressing plants exhibited higher chlorophyll, proline, SOD, POD, CAT, and soluble sugar contents and lower H2O2 accumulation than wild-type plants, supporting transgenic plants with enhanced salinity tolerance phenotypes. OsRFPH2-3-overexpressing plants exhibited low Na+ accumulation and Na+/K+ ratios in their roots. Theses results suggest that overexpression of OsRFPH2-3 can make plant insensitivity about salinity conditions.

  • PDF

Development of efficient protocol for screening of rice genotypes using physiological traits for salt tolerance

  • Kim, Sung-Mi;Reddy, Inja Naga Bheema Lingeswar;Yoon, In Sun;Kim, Beom-Gi;Kwon, Taek-Ryoun
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.189-189
    • /
    • 2017
  • Salinity is one of the major abiotic stresses that severely affect crop production throughout the world; especially rice plant which is generally categorized as a typical glycophyte as it cannot grow in the presence of salinity. Phenotypic resistance of salinity is expressed as the ability to survive and grow in a salinity condition. Salinity resistance has, at least implicitly, been treated as a single trait. Physiological studies of rice suggest that a range of characteristics (such as low shoot sodium concentration, compartmentation of salt in older rather than younger leaves, high potassium concentration, high $K^+/Na^+$ ratio, high biomass and plant vigour) would increase the ability of the plant to cope with salinity. Criteria for evaluating and screening salinity tolerance in crop plants vary depending on the level and duration of salt stress and the plant developmental stage. Plant growth responses to salinity vary with plant life cycle; critical stages sensitive to salinity are germination, seedling establishment and flowering. We have established a standard protocol to evaluate large rice germplasms for overall performance based on specific physiological traits for salt tolerance at seedling stage. This protocol will help in identifying germplasms which can perform better in the presence of different salinity treatments based on single trait and also combination of different physiological traits. The salt tolerant germplasm can be taken forward into developing better varieties by conventional breeding and exploring genes for salt tolerance.

  • PDF

Oligopeptide transporter 관여 유전자 도입 형질전환벼의 고온스트레스 내성 증진 (Overexpression of an oligopeptide transporter gene enhances heat tolerance in transgenic rice)

  • 정은주;송재영;유달아;김미선;정유진;강권규;박수철;조용구
    • Journal of Plant Biotechnology
    • /
    • 제44권3호
    • /
    • pp.296-302
    • /
    • 2017
  • 지구온난화로 인해 온도 상승에 따른 고온 스트레스는 전세계 많은 지역에서 농업적으로 문제가 되어 세계 3대 곡물인 벼의 생산에 피해가 크게 나타나고 있다. 식물은 생장하면서 다양한 환경스트레스에 노출되며, 이러한 스트레스는 작물의 생장, 발달, 수확량 등에 영향을 미친다. 본 연구는 벼의 안정적인 생산성을 높이기 위해 벼 유래 OsOPT 유전자를 이용한 형질전환 후대에서 고온 조건하에서도 생육이 가능한 계통을 선발하여 그 특성을 살펴보았다. 먼저, OsOPT10 유전자 도입 형질전환 벼를 이용하여 고온 처리에 따른 저항성 계통을 선발하고, 선발된 계통의 생리적 특성을 분석하였으며, 분자적 특성을 qRT-PCR을 통해 유전자의 발현 양상을 분석하였다. 고온 스트레스에 의한 세포막 피해 정도를 알아보기 위해 전해질 누출(electrolyte leakage), 삼투조절제 역할을 하는 수용성 당 및 proline 함량 분석을 하여 대조구와 비교분석 하였다. 본 실험에서 고온 처리에 의한 가용성 당 함량의 변화는 OsOPT10-16 형질전환 벼를 제외하고 OsOPT10-1와 OsOPT10-7 계통이 WT 보다 당 함량이 높게 나타났다. 모품종 동진에 비해 형질전환 벼 계통의 EL 값이 낮게 나타난 것과 가용성 당 함량이 비슷하거나 높게 나타난 것으로 보아 OsOPT10 형질전환 벼가 고온 스트레스에서 저항성 반응을 나타낸 것으로 판단하였다.

Identification and Transcriptional Analysis of Priming Genes in Arabidopsis thaliana Induced by Root Colonization with Pseudomonas chlororaphis O6

  • Cho, Song-Mi;Park, Ju-Yeon;Han, Song-Hee;Anderson, Anne J.;Yang, Kwang-Yeol;Gardener, Brian Mcspadden;Kim, Young-Cheol
    • The Plant Pathology Journal
    • /
    • 제27권3호
    • /
    • pp.272-279
    • /
    • 2011
  • Root colonization of Arabidopsis thaliana with Pseudomonas chlororaphis O6 induces systemic tolerance against diverse pathogens, as well as drought and salt stresses. In this study, we demonstrated that 11 genes in the leaves were up-regulated, and 5 genes were down-regulated as the result of three- to five-days root colonization by P. chlororaphis O6. The identified priming genes were involved in cell signaling, transcription, protein synthesis, and degradation. In addition, expression of selected priming genes were induced in P. chlororaphis O6-colonized plants subjected to water withholding. Genes encoding defense proteins in signaling pathways regulated by jasmonic acid and ethylene, such as VSP1 and PDF1.2, were additional genes with enhanced expression in the P. chlororaphis O6-colonized plants. This study indicated that the expression of priming genes, as well as genes involved in jasmonic acid- and ethylene-regulated genes may play an important role in the systemic induction of both abiotic and biotic stress due to root colonization by P. chlororaphis O6.