• Title/Summary/Keyword: Abiotic Stress

Search Result 358, Processing Time 0.023 seconds

Salinity Stress Resistance Offered by Endophytic Fungal Interaction Between Penicillium minioluteum LHL09 and Glycine max. L

  • Khan, Abdul Latif;Hamayun, Muhammad;Ahmad, Nadeem;Hussain, Javid;Kang, Sang-Mo;Kim, Yoon-Ha;Adnan, Muhammad;Tang, Dong-Sheng;Waqas, Muhammad;Radhakrishnan, Ramalingam;Hwang, Young-Hyun;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.893-902
    • /
    • 2011
  • Endophytic fungi are little known for their role in gibberellins (GAs) synthesis and abiotic stress resistance in crop plants. We isolated 10 endophytes from the roots of field-grown soybean and screened their culture filtrates (CF) on the GAs biosynthesis mutant rice line - Waito-C. CF bioassay showed that endophyte GMH-1B significantly promoted the growth of Waito-C compared with controls. GMH-1B was identified as Penicillium minioluteum LHL09 on the basis of ITS regions rDNA sequence homology and phylogenetic analyses. GC/MS-SIM analysis of CF of P. minioluteum revealed the presence of bioactive $GA_4$ and $GA_7$. In endophyte-soybean plant interaction, P. minioluteum association significantly promoted growth characteristics (shoot length, shoot fresh and dry biomasses, chlorophyll content, and leaf area) and nitrogen assimilation, with and without sodium chloride (NaCl)-induced salinity (70 and 140 mM) stress, as compared with control. Field-emission scanning electron microcopy showed active colonization of endophyte with host plants before and after stress treatments. In response to salinity stress, low endogenous abscisic acid and high salicylic acid accumulation in endophyte-associated plants elucidated the stress mitigation by P. minioluteum. The endophytic fungal symbiosis of P. minioluteum also increased the daidzein and genistein contents in the soybean as compared with control plants, under salt stress. Thus, P. minioluteum ameliorated the adverse effects of abiotic salinity stress and rescued soybean plant growth by influencing biosynthesis of the plant's hormones and flavonoids.

Effect of Cu-resistant Pseudomonas on growth and expression of stress-related genes of tomato plant under Cu stress (구리-오염 토양에서 토마토 식물의 생장과 스트레스-관련 유전자 발현에 미치는 구리-내성 Pseudomonas의 영향)

  • Kim, Min-Ju;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.257-264
    • /
    • 2017
  • Pseudomonas veronii MS1 and P. migulae MS2 have several mechanisms of copper resistance and plant growth promoting capability, and also can alleviate abiotic stress in plant by hydrolysis of a precursor of stress ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC deaminase. In 4-week pot test for tomato growth in soil contained 700 mg/kg Cu, inoculation of MS1 and MS2 significantly increased root and shoot lengths, wet weight and dry weight of tomato plants compared to those of uninoculated control. The inoculated tomato plants contained less amounts of proline that can protect plants from abiotic stress, and malondialdehyde, an oxidative stress marker than those of control. ACC synthase genes, ACS4 and ACS6, and ACC oxidase genes, ACO1 and ACO4, both involved in ethylene synthesis, were strongly expressed in Cu stressed tomato, whereas significantly reduced in tomato inoculated with MS1 and MS2. Also, a gene encoding a metal binding protein metallothionein, MT2 showed similar expression pattern with above genes. All these results indicated that these rhizobacteria could confer Cu resistance to tomato plant under Cu stress and allowed a lower level of Cu stress and growth promotion.

Drought and salinity stress response in wheat: physiological and TaNAC gene expression analysis in contrasting Egyptian wheat genotypes

  • El-Moneim, D. Abd;Alqahtani, Mesfer M.;Abdein, Mohamed A.;Germoush, Mousa O.
    • Journal of Plant Biotechnology
    • /
    • v.47 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • Drought and salinity are significant stressors for crop plants, including wheat. The relationship between physiological mechanisms and gene expression is important for stress tolerance. NAC transcription factors (TFs) play vital roles in abiotic stress. In this study, we assessed the expression of four TaNAC genes with some physiological traits of nine Egyptian wheat genotypes under different concentrations of PEG and NaCl. All the physiological traits that we assessed declined under both stress conditions in all genotypes. In addition, all the genes that we measured were induced under both stress conditions in young leaves. Shandaweel 1, Bani Seuf 7, Sakha 95, and Misr 2 genotypes showed higher gene expression and were linked with a better genotypic performance in physiological traits under both stress conditions. In addition, we found an association between the expression of NAC genes and physiological traits. Overall, NAC genes may act as beneficial markers for selecting for genotypic tolerance to these stress conditions in wheat.

Identification and functional analysis of COLD-signaling-related genes in Panax ginseng

  • Jeongeui Hong;Hojin Ryu
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.225-231
    • /
    • 2023
  • Cold stress is one of the most vulnerable environmental stresses that affect plant growth and crop yields. With the recent advancements in genetic approaches using Arabidopsis and other model systems, genes involved in cold-stress response have been identified and the key cold signaling factors have been characterized. Exposure to low-temperature stress triggers the activation of a set of genes known as cold regulatory (COR) genes. This activation process plays a crucial role in enhancing the resistance of plants to cold and freezing stress. The inducer of the C-repeatbinding factor (CBF) expression 1-CBF module (ICE1-CBF module) is a key cold signaling pathway regulator that enhances the expression of downstream COR genes; however, this signaling module in Panax ginseng remains elusive. Here, we identified cold-signaling-related genes, PgCBF1, PgCBF3, and PgICE1 and conducted functional genomic analysis with a heterologous system. We confirmed that the overexpression of cold- PgCBF3 in the cbf1/2/3 triple Arabidopsis mutant compensated for the cold stress-induced deficiency of COR15A and salt-stress tolerance. In addition, nuclearlocalized PgICE1 has evolutionarily conserved phosphorylation sites that are modulated by brassinsteroid insensitive 2 (PgBIN2) and sucrose non-fermenting 1 (SNF1)-related protein kinase 3 (PgSnRK3), with which it physically interacted in a yeast two-hybrid assay. Overall, our data reveal that the regulators identified in our study, PgICE1 and PgCBFs, are evolutionarily conserved in the P. ginseng genome and are functionally involved in cold and abiotic stress responses.

Effects of water stress on chemical composition of rice grains (수분 스트레스가 벼의 성분에 미치는 영향)

  • Nam, Kyong-Hee;Kim, Chang-Gi
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • Drought is one of the major abiotic constraints limiting quantity and quality of rice grain. In order to elucidate the effects of drought on chemical compositions of rice grain, seedlings were cultivated in a rainout shelter controlled with well-watered or water-deficit conditions. After harvesting, the key components including proximates, amino acids, fatty acids, minerals, and vitamins of rice grains were analyzed. Drought stress increased the amounts of methionine, phenylalanine, linoleic acid, linolenic acid, calcium, potassium, vitamin B1, and vitamin E in rice grains, whereas it decreased the contents of lignoceric acid. Particularly, drought stress caused a marked increase in vitamin E content. These results indicate drought significantly influence the chemical compositions of rice grains.

Proteomic Analysis of Drought Stress-Responsive Proteins in Rice Endosperm Affecting Grain Quality

  • Mushtaq, Roohi;Katiyar, Sanjay;Bennett, John
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.227-232
    • /
    • 2008
  • Drought stress is one of the major abiotic stresses in agriculture worldwide. We report here a proteomic approach to investigate the impact of post-fertilization drought on grain quality in rice seed endosperm (Oryza sativa cv. IR-64). Plants were stressed for 4 days at 3 days before heading. Total proteins of endosperm were extracted and separated by two-dimensional gel electrophoresis. Not many protein spots showed differential accumulation in drought-stressed samples. More than 400 protein spots were reproducibly detected, including three that were up-regulated and five down-regulated. Mass spectrometry analysis and database searching helped us to identify six spots representing different proteins. Functionally, the identified proteins were related to protein synthesis and carbohydrate metabolism, such as Granule-Bound Starch Synthase (GBSS, Wx protein), which is thought to play a very important role in starch biosynthesis and quality, a very crucial factor in determining rice grain quality.

  • PDF

Extracellular Polymeric Substances of Pseudomonas chlororaphis O6 Induce Systemic Drought Tolerance in Plants

  • Cho, Song Mi;Anderson, Anne J.;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.24 no.3
    • /
    • pp.242-247
    • /
    • 2018
  • Pseudomonas chlororaphis O6 induces systemic tolerance in plants against drought stress. A volatile, 2R, 3R-butanediol, produced by the bacterium causes partial stomatal closure, thus, limiting water loss from the plant. In this study, we report that applications of extracellular polymeric substances (EPS) from P. chlororaphis O6 to epidermal peels of leaves of Arabidopsis thaliana also reduce the size of stomatal openings. Growth of A. thaliana seedlings with applications of the EPS from P. chlororaphis O6 reduced the extent of wilting when water was withheld from the plants. Fluorescence measurements showed photosystem II was protected in the A. thaliana leaves in the water stressed EPS-exposed plants. These findings indicate that P. chlororaphis O6 has redundancy in traits associated with induction of mechanisms to limit water stress in plants.

Rice Iron Metabolism: from Source to Solution

  • Santos, Livia Scheunemann dos;Oliveira, Antonio Costa de
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.64-72
    • /
    • 2007
  • Iron is an important micronutrient for plants. Iron metabolism is a complex mechanism under a delicate balance. Iron metabolism represents two major problems for plants: deficiency as a consequence of solubility problems and toxicity due to excess solubility in anaerobic conditions. In the last few years, new genes have been discovered that influence iron uptake, transport and storage. Irrigated rice is exposed to high levels of $Fe^{II}$, normally rare in aerobic soil conditions. The implications of altering iron uptake rates and the effects of newly discovered genes are discussed.

  • PDF