• Title/Summary/Keyword: Abaqus

Search Result 1,414, Processing Time 0.025 seconds

An Analytic Study on the Bond Stress between Concrete and Steel Tube in CFT Rectangular Column (충전각형강관기둥에서 콘크리트와 강관의 부착응력에 관한 해석적 연구)

  • Park, Sung-Moo;Kang, Joo-Won;Kim, Won-Ho;Lee, Hyung-Seok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.4 s.6
    • /
    • pp.53-60
    • /
    • 2002
  • An analytic study on the bond stress between steel tube and concrete in concrete filled steel(CFT) rectangular column is presented in this paper. Recently buildings need members which are enhanced durability and ductility. Concrete filled rectangular column system is proposed as alternative plan. In this paper, ABAQUS/Standard Version 5.8 which is identified as usefulness for finite element analysis and has various element library is used. The variables in this study are the location and type of shear-connector. The modeling on contact problem practiced by Contact Pair and Contact Pressure method. In the step of physical bond, it is practiced by Change friction option After yielding of models, analytic results is less than that of experimental results.

  • PDF

Densification behavior and grain growth of zirconia powder compacts at high temperature (지르코니아 분말 성형체의 고온 치밀화 거동과 결정립 성장)

  • Kim, H.G;Kim, K.T
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1175-1187
    • /
    • 1997
  • Densification behavior and grain growth of zirconia powder compacts are investigated under high temperature. Experimental data are obtained for zirconia powder under pressureless sintering, sinter forging and hot isostatic pressing. The constitutive equations by Kwon et al. are used for diffusional creep and grain growth. The constitutive equations by McMeeking and co-workers are also included to study the effect of power-law creep. These constitutive equations are implemented into a finite element program (ABAQUS) to investigate the friction effect during sinter forging and the canning effect during hot isostatic pressing. The agreements between experimental data and finite element results are very good in pressureless sintering and hot isostatic pressing, but not as good in sinter forging.

Densification Behavior of Ti-6Al-4V Power Compacts by Hot Isostatic Pressing (열간 등가압 소결에 의한 Ti-6Al-4V 분말의 치밀화 거동)

  • Yang, Hun-Cheol;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.394-402
    • /
    • 2000
  • Densification behavior of titanium alloy powder was investigated under hot isostatic pressing at various pressures and temperatures. Uniaxial creep responses of a dense specimen were also obtained at high temperatures. The densification model of Abouaf and co-workers was implemented into a Finite element program (ABAQUS) to compare with experimental data for titanium alloy powder. The agreements between finite element calculations and experimental data for deformation and densification of titanium alloy powder were good during hot isostatic pressing.

A Study on the Impact Absorbing Characteristics for Various Shape and Hardness of Cylindrical Rubber Structures (원주형 고무구조물의 형상과 재질변화에 따른 충격흡수특성)

  • Kim, Dong-Jin;Kim, Wan-Doo;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.441-446
    • /
    • 2004
  • Mechanical systems with rubber parts have been used widely in industry fields. The evaluation of the physical characteristics of rubber is important in rubber application. Rubber material is useful to machine component for excellent shock absorbing characteristics. The impact characteristics of rubber were examined by experimental and finite element method. The impact test was conducted with a free-drop type impact tester. The ABAQUS/Explicit was used for finite element analysis. The effects of thickness and diameter of the cylindrical rubber structures were investigated. The impact absorbing ratio of the rubber material was studied order to compare the peak reaction force of the specimen which only contained aluminum against the specimen with the inserted rubber part.

  • PDF

Analysis for Fracture Characteristics of Porous Materials by using Cohesive Zone Models (응집영역모델을 이용한 다공질 재료의 파괴 거동 연구)

  • Choi, Seung-Hyun;Ha, Sang-Yul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.552-559
    • /
    • 2009
  • The effect of porosity on the crack propagation is studied by using the cohesive zone model. Standard mode I fracture test were done by using compact tension specimens with various porosities. Load-load line displacement curves and ${\delta}_5$-crack resistance curves for various porosities were obtained from experiments. The cohesive zone model proposed by Xu and Needleman was employed to describe the crack propagation in porous media, and the Gurson model is used for constitutive relation of porous materials. These models were implemented into user subroutines of a finite element program ABAQUS. The fracture mode changes from ductile fracture to brittle fracture as the porosity increases. Numerical calculations agree well with experimental results.

Study on Buckling Analysis of Portable Prestressing Bed (이동식 긴장대의 좌굴해석 기법 연구)

  • Kim, Jong-Suk;Yoon, Ki-Yong;Kim, Yong-Hyeog
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.461-465
    • /
    • 2010
  • 본 연구는 유한요소해석프로그램(ABAQUS)을 사용하여 이동식 긴장대의 좌굴해석 기법을 연구한 것이다. 50m에 달하는 프리텐션 방식의 PSC 거더를 제작하기 위해서는 약 10MN에 이르는 매우 큰 긴장력이 가해져 이동식 긴장대가 콘크리트 양생전까지 이 긴장력을 저항하여야 한다. 따라서 이동식 긴장대는 좌굴에 대한 안정성을 확보하여야 한다. 이에 본 논문에서는 앞서 개발한 이동식 긴장대의 해석모델을 이용하여 좌굴해석 기법에 대해 연구하여 이동식 긴장대가 좌굴에 대한 안정성 확보 여부를 파악하고자 하였다.

  • PDF

Transient stress analysis of tracked vehicle structures under recoil impact load (주퇴충격하중을 받는 궤도차량 구조물의 천이응력해석)

  • 이영신;김용환;김영완;김동수;성낙훈
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.111-119
    • /
    • 1993
  • In this study, the transient impact structural stress analysis of tracked vehicle structures under recoil impact load is investigated. ANSYS, ABAQUS Code are used for modelling and analytical procedures. The highest maximum Tresca stress occurs on race ring portion and its stress level is (.sigma.$_{T}$)$_{max}$ =20-40kgf/m $m^{2}$. The second highest stress occurs on upper plate of chassis and down plate of turret. The maximum stress level increases with loading direction and elevation angle. The results from liner static load analysis are very much different with impact analysis. Therefore, the practical solutions of structures under impact load can be obtained by only nonlinear transient impact analysis. The impact stress analysis of the steel vehicle structures is conducted. The maximum stress level is less than (.sigma.$_T/)$_{max}$m $m^{2}$. So, the design concept of steel structures can be adapted for new alternatives.s.s.s..s.

  • PDF

Analysis for Cold Die Compaction of Meteal Powder (금속분말의 냉간금형 압축 해석)

  • Gwon, Yeong-Sam;Lee, Hui-Tae;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1893-1902
    • /
    • 1996
  • Densification behavior of 316L stainless steel power under die pressing was studied. The efects of friction between the powder and die wall under different die pressing modes were also investigated. The elastoplastic constitutive equations based on the yield functions of Fleck-Gurson and of Shima and Oyane were implemented into finite element program(ABAQUS) to simulate die compaction processes. The finite element results were compared with experimental data for 316L stainless steel powder under die pressing.

Shape design for viscoelastic vibration isolators to minimize rotational stiffness (회전강성 최소화를 위한 절연요소의 형상 설계)

  • Oh, Hwan-Youp;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.343-347
    • /
    • 2008
  • Design of shape for visco-elastic vibration isolation elements, which are very cost-effective and so popular in many applications is frequently based on experiences, intuitions, or trial and errors. Such traditions in shape design make it difficult for drastic changes or new concepts to come out. In this paper, both topological method and shape optimization method are combined together to find out a most desirable isolator shape efficiently by using two commercial engineering programs. ABAQUS and MATLAB. The procedure is divided into two steps. At the first step, a topology optimization method is employed to find an initial shape. where density of either 0 or 1 for finite elements is used for physical realizability. At the second step, based on the initial shape, finer tuning of the shape is done by boundary movement method. An illustration of the procedure will be presented for a mount of an air-conditioner compressor system and the effectiveness will be discussed.

  • PDF

The vibration and noise characteristic analysis of the BLDC Axial-gap type motor by using Finite Element Method (FEM 을 이용한 BLDC Axial-gap type 전동기의 진동과 소음 특성 분석)

  • Lee, Taeck-Jin;Park, Jun-Hong;Lee, Sang-Ho;Hong, Jung-Pyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.943-946
    • /
    • 2007
  • The vibration and noise characteristic of the Axial-gap motor for an air conditioner were analyzed. Experimental Modal Analysis was performed to understand the vibration characteristic of the motor. The noise of motor was measured in a dead room. Finite Element Method was performed to find the vibration characteristic of the motor by using ABAQUS program.

  • PDF