• 제목/요약/키워드: Abaqus

검색결과 1,395건 처리시간 0.021초

유한요소법을 이용한 프리스트레스트 콘크리트 깊은 보의 전단 거동 해석 (Finite Element Analysis to Determine Shear Behavior of Prestressed Concrete Deep Beams)

  • 김혜경;김한수
    • 한국전산구조공학회논문집
    • /
    • 제32권3호
    • /
    • pp.165-172
    • /
    • 2019
  • 본 논문에서는 프리스트레스트 콘크리트 깊은 보의 전단 강도를 유한요소법을 이용한 수치해석으로 예측해 보았다. 프리스트레스의 정도를 주요 변수로 하여 전단 강도의 변화를 살펴보았다. 유한요소해석 프로그램인 Abaqus를 사용하여 CDP재료 모델과 초기조건을 설정함으로 프리스트레스트 콘크리트 깊은 보의 전단 강도를 비교적 정확하게 예측할 수 있으며 오차는 5%이하였다. 또한 깊은 보의 strut-and-tie 모델과 동일한 형태를 나타냈으며, 해석이 타당하다고 본다. 프리스트레스트 콘크리트 깊은 보의 전단 강도를 예측하기 위해 제안된 수식으로 전단 강도를 계산하였을 때 실제 전단 강도보다 큰 수치를 얻었다. 텐던에 가해진 프리스트레스의 크기가 커질수록 깊은 보의 전단 강도는 선형적으로 증가하는 현상을 보였다. 깊은 보의 전단 강도를 효과적으로 증가시키기 위해 프리스트레스트 콘크리트 깊은 보를 활용할 수 있다.

Geomechanical assessment of reservoir and caprock in CO2 storage: A coupled THM simulation

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Advances in Energy Research
    • /
    • 제6권1호
    • /
    • pp.75-90
    • /
    • 2019
  • Anthropogenic greenhouse gas emissions are rising rapidly despite efforts to curb release of such gases. One long term potential solution to offset these destructive emissions is the capture and storage of carbon dioxide. Partially depleted hydrocarbon reservoirs are attractive targets for permanent carbon dioxide disposal due to proven storage capacity and seal integrity, existing infrastructure. Optimum well completion design in depleted reservoirs requires understanding of prominent geomechanics issues with regard to rock-fluid interaction effects. Geomechanics plays a crucial role in the selection, design and operation of a storage facility and can improve the engineering performance, maintain safety and minimize environmental impact. In this paper, an integrated geomechanics workflow to evaluate reservoir caprock integrity is presented. This method integrates a reservoir simulation that typically computes variation in the reservoir pressure and temperature with geomechanical simulation which calculates variation in stresses. Coupling between these simulation modules is performed iteratively which in each simulation cycle, time dependent reservoir pressure and temperature obtained from three dimensional compositional reservoir models in ECLIPSE were transferred into finite element reservoir geomechanical models in ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, efficiency of this approach is demonstrated through a case study of oil production and subsequent carbon storage in an oil reservoir. The methodology and overall workflow presented in this paper are expected to assist engineers with geomechanical assessments for reservoir optimum production and gas injection design for both natural gas and carbon dioxide storage in depleted reservoirs.

In-plane structural analysis of blind-bolted composite frames with semi-rigid joints

  • Waqas, Rumman;Uy, Brian;Wang, Jia;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • 제31권4호
    • /
    • pp.373-385
    • /
    • 2019
  • This paper presents a useful in-plane structural analysis of low-rise blind-bolted composite frames with semi-rigid joints. Analytical models were used to predict the moment-rotation relationship of the composite beam-to-column flush endplate joints that produced accurate and reliable results. The comparisons of the analytical model with test results in terms of the moment-rotation response verified the robustness and reliability of the model. Abaqus software was adopted to conduct frame analysis considering the material and geometrical non-linearities. The flexural behaviour of the composite frames was studied by applying the lateral loads incorporating wind and earthquake actions according to the Australian standards. A wide variety of frames with a varied number of bays and storeys was analysed to determine the bending moment envelopes under different load combinations. The design models were finalized that met the strength and serviceability limit state criteria. The results from the frame analysis suggest that among lateral loads, wind loads are more critical in Australia as compared to the earthquake loads. However, gravity loads alone govern the design as maximum sagging and hogging moments in the frames are produced as a result of the load combination with dead and live loads alone. This study provides a preliminary analysis and general understanding of the behaviour of low rise, semi-continuous frames subjected to lateral load characteristics of wind and earthquake conditions in Australia that can be applied in engineering practice.

코팅된 분포형 광섬유 센서의 변형률 전달률 (Strain Transmission Ratio of a Distributed Optical Fiber Sensor with a Coating Layer)

  • 윤상영;권일범;유효선;김은호
    • Composites Research
    • /
    • 제31권6호
    • /
    • pp.429-434
    • /
    • 2018
  • 본 연구에서는 구조물에 부착된 분포형 광섬유 센서의 변형률을 정밀하게 분석하기 위해 위치에 따른 변형률의 변화를 고려하여 광섬유 센서의 변형률 전달률을 분석하였다. 표면에 부착된 코팅된 광섬유 센서의 모델로부터 해석적으로 광섬유 센서의 변형률 전달률을 유도하였으며, 유도된 변형률 전달률은 유한요소해석을 통해 수치적으로 해석한 결과와 비교 검증하였다. 주 구조물의 변형률이 동일한 파장을 가지며 변하는 경우 센서의 변형률 전달률은 위치에 따라 동일한 값을 보였으며, 따라서 변형률 분포의 형상은 왜곡되지 않는다. 하지만 위치에 따라 변형률 파장이 변하면 변형률의 전달률이 위치에 따라 달라져 변형률 분포의 형상이 왜곡될 수 있음을 확인하였다. 본 연구를 통해 얻어진 파장에 따른 변형률 전달률은 분포형 광섬유 센서로부터 주 구조물의 변형률 분포를 정밀하게 추정하는데 유용하게 사용될 것으로 기대된다.

굴곡측정법을 이용한 신 레일의 잔류응력 분석 (Residual Stress Analysis of New Rails Using Contour Method)

  • 송민지;최욱진;임남형;김동규;우완측;이수열
    • 한국도시철도학회논문집
    • /
    • 제6권4호
    • /
    • pp.393-399
    • /
    • 2018
  • 레일의 잔류응력은 레일의 피로 및 파괴 특성에 영향을 끼치는 인자로서, 레일의 가공 및 열처리 등 생산 과정 단계에서 이미 형성되며, 이를 정확하게 분석하는 기술은 매우 중요한 문제이다. 본 연구에서는 레일 내부에 존재하는 잔류응력을 측정하기 위하여, 잔류응력 분석방법의 하나인 파괴법 기반 굴곡측정법을 적용하여 레일 축 방향의 잔류응력을 평가하였다. 레일의 축 방향과 수직한 단면을 방전가공을 사용하여 느린 속도로 단면을 절단한 후 레이저 기반인 굴곡 측정기를 이용하여 단면의 굴곡을 정밀 측정하였다. 측정된 데이터는 유한요소해석 프로그램 ABAQUS를 활용하여 설정한 요소로 잔류응력으로 변환시켰으며, 총 3종의 다른 규격을 갖고 있는 신 레일 (50N, KR60, UIC60)의 잔류응력 값의 경향과 수치를 비교하였다.

Feasibility Study of Submerged Floating Tunnels Moored by an Inclined Tendon System

  • Won, Deokhee;Kim, Seungjun
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1191-1199
    • /
    • 2018
  • Concepts of submerged floating tunnels (SFTs) for land connection have been continuously suggested and developed by several researchers and institutes. To maintain their predefined positions under various dynamic environmental loading conditions, the submerged floating tunnels should be effectively moored by reasonable mooring systems. With rational mooring systems, the design of SFTs should be confirmed to satisfy the structural safety, fatigue, and operability design criteria related to tunnel motion, internal forces, structural stresses, and the fatigue life of the main structural members. This paper presents a feasibility study of a submerged floating tunnel moored by an inclined tendon system. The basic structural concept was developed based on the concept of conventional cable-stayed bridges to minimize the seabed excavation, penetration, and anchoring work by applying tower-inclined tendon systems instead of conventional tendons with individual seabed anchors. To evaluate the structural performance of the new type of SFT, a hydrodynamic analysis was performed in the time domain using the commercial nonlinear finite element code ABAQUS-AQUA. For the main dynamic environmental loading condition, an irregular wave load was examined. A JONSWAP wave spectrum was used to generate a time-series wave-induced hydrodynamic load considering the specific significant wave height and peak period for predetermined wave conditions. By performing a time-domain hydrodynamic analysis on the submerged floating structure under irregular waves, the motional characteristics, structural stresses, and fatigue damage of the floating tunnel and mooring members were analyzed to evaluate the structural safety and fatigue performance. According to the analytical study, the suggested conceptual model for SFTs shows very good hydrodynamic structural performance. It can be concluded that the concept can be considered as a reasonable structural type of SFT.

Numerical analysis of simply supported one-way reinforced concrete slabs under fire condition

  • Ding, Fa-xing;Wang, Wenjun;Jiang, Binhui;Wang, Liping;Liu, Xuemei
    • Computers and Concrete
    • /
    • 제27권4호
    • /
    • pp.355-367
    • /
    • 2021
  • This paper investigates the mechanical response of simply supported one-way reinforced concrete slabs under fire through numerical analysis. The numerical model is constructed using the software ABAQUS, and verified by experimental results. Generally, mechanical response of the slab can be divided into four stages, accompanied with drastic stress redistribution. In the first stage, the bottom of the slab is under tension and the top is under compression. In the second stage, stress at bottom of the slab becomes compression due to thermal expansion, with the tension zone at the mid-span section moving up along the thickness of the slab. In the third stage, compression stress at bottom of the slab starts to decrease with the deflection of the slab increasing significantly. In the fourth stage, the bottom of the slab is under tension again, eventually leading to cracking of the slab. Parametric studies were further performed to investigate the effects of load ratio, thickness of protective layer, width-span ratio and slab thickness on the performance of the slab. Results show that increasing the thickness of the slab or reducing the load ratio can significantly postpone the time that deflection of the slab reaches span/20 under fire. It is also worth noting that slabs with the span ratio of 1:1 reached a deflection of span/20 22 min less than those of 1:3. The thickness of protective layer has little effect on performance of the slab until it reaches a deflection of span/20, but its effect becomes obvious in the late stages of fire.

수소트럭 수소저장시스템에 대한 구조안전성 및 기밀성능평가 (Evaluation of Structural Safety and Leak Test for Hydrogen Fuel Cell-Based Truck Storage Systems)

  • 김다은;염지웅;최성준;김영규;조성민
    • 한국기계가공학회지
    • /
    • 제19권11호
    • /
    • pp.1-7
    • /
    • 2020
  • Recently, hydrogen has gained considerable attention as an eco-friendly fuel, which helps in reducing carbon dioxide content. Specifically, there is a growing interest in vehicles powered by a hydrogen fuel cell, which is spotlighted as an environmental-friendly alternative. A hydrogen transport system, fuel cell system, fuel supply system, power management system, and hydrogen storage system are key parts of a hydrogen fuel cell truck. In this study, a hydrogen storage system is built and analyzed. The expansion length of the storage vessel at maximum operating pressure (87.5 MPa) was calculated with ABAQUS, and then the optimized system was designed and built. The leak and bubble tests were performed on the built storage system. The leakage of the system was measured to be under 5 cc/hr. Hence, it can be used as a research test for the safety evaluation of leading systems of hydrogen fuel-powered commercial vehicles.

Analytical post-heating behavior of concrete-filled steel tubular columns containing tire rubber

  • Karimi, Amirhossein;Nematzadeh, Mahdi;Mohammad-Ebrahimzadeh-Sepasgozar, Saleh
    • Computers and Concrete
    • /
    • 제26권6호
    • /
    • pp.467-482
    • /
    • 2020
  • This research focused on analyzing the post-fire behavior of high-performance concrete-filled steel tube (CFST) columns, with the concrete containing tire rubber and steel fibers, under axial compressive loading. The finite element (FE) modeling of such heated columns containing recycled aggregate is a branch of this field which has not received the proper attention of researchers. Better understanding the post-fire behavior of these columns by measuring their residual strength and deformation is critical for achieving the minimum repair level required for structures damaged in the fire. Therefore, to develop this model, 19 groups of confined and unconfined specimens with the variables including the volume ratio of steel fibers, tire rubber content, diameter-to-thickness (D/t) ratio of the steel tube, and exposure temperature were considered. The ABAQUS software was employed to model the tested specimens so that the accurate behavior of the FE-modeled specimens could be examined under test conditions. To achieve desirable results for the modeling of the specimens, in addition to the novel procedure described in this research, the modified versions of models presented by previous researchers were also utilized. After the completion of modeling, the load-axial strain and load-lateral strain relationships, ultimate strength, and failure mode of the modeled CFST specimens were evaluated against the test data, through which the satisfactory accuracy of this modeling procedure was established. Afterward, using a parametric study, the effect of factors such as the concrete core strength at different temperatures and the D/t ratio on the behavior of the CFST columns was explored. Finally, the compressive strength values obtained from the FE model were compared with the corresponding values predicted by various codes, the results of which indicated that most codes were conservative in terms of these predictions.

Experimental and numerical studies on the shear connectors in steel-concrete composite beams at fire and post fire exposures

  • Mirza, Olivia;Shil, Sukanta Kumer;Rashed, M.G.;Wilkins, Kathryn
    • Steel and Composite Structures
    • /
    • 제39권5호
    • /
    • pp.529-542
    • /
    • 2021
  • Shear connectors are required to build composite (concrete and steel) beams. They are placed at the interface of concrete and steel to transfer shear and normal forces between two structural components. Such composite beams are sensitive to provide structural integrity when exposed to fire as they loss strength, stiffness, and ductility at elevated temperature. The present study is designed to investigate the shear resistance and the failure modes of the headed stud shear connectors at fire exposure and post-fire exposure. The study includes ordinary concrete and concrete with carbon nanotubes (CNTs) to build composite (concrete-steel) beams with structural steel. Experimental push tests were conducted on composite beams at ambient and elevated temperatures, such as 200, 400 & 600℃. Moreover, push tests were performed on the composite beams after being exposed to 200, 400 & 600℃. Push test results illustrated the reduction of ultimate shear capacity and stiffness of headed stud shear connectors as the temperature increased. Although similar values of ultimate shear were obtained for the headed stud connectors in both ordinary and CNT concrete, the CNT modified concrete reduced the concrete spalling and cracking compared to ordinary concrete and was observed to be effective at temperatures greater than 400℃. All specimens showed a lower shear resistance at fire exposures compared to the corresponding post-fire exposures. Moreover, numerical simulation by Finite Element (FE) analyses were carried out at ambient temperature and at fire conditions. The FE analysis results show a good agreement with the experimental results. In the experimental studies, failure of all specimens occurred due to shear failure of headed stud, which was later validated by FE analyses using ABAQUS.