• Title/Summary/Keyword: Ab inito study

Search Result 4, Processing Time 0.023 seconds

Ab-initio Study of Hydrogen Permeation though Palladium Membrane (팔라듐 얇은 막의 수소 투과에 대한 제일 원리 계산)

  • Cha, Pil-Ryung;Kim, Jin-You;Seok, Hyun-Kwang;Kim, Yu Chan
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.296-303
    • /
    • 2008
  • Hydrogen permeation through dense palladium-based membranes has attracted the attention of many scientists largely due to their unmatched potential as hydrogen-selective membranes for membrane reactor applications. Although it is well known that the permeation mechanism of hydrogen through Pd involves various processes such as dissociative adsorption, transitions to and from the bulk Pd, diffusion within Pd, and recombinative desorption, it is still unclear which process mainly limits hydrogen permeation at a given temperature and hydrogen partial pressure. In this study, we report an all-electron density-functional theory study of hydrogen permeation through Pd membrane (using VASP code). Especially, we focus on the variation of the energy barrier of the penetration process from the surface to the bulk with hydrogen coverage, which means the large reduction of the fracture stress in the brittle crack propagation considering Griffith's criterion. It is also found that the penetration energy barrier from the surface to the bulk largely decreases so that it almost vanishes at the coverage 1.25, which means that the penetration process cannot be the rate determining process.

Energy Level Alignment between Hole Injecting HAT-CN and Metals and Organics: UPS and ab-initio Calculations

  • Kang, H.;Kim, J.H.;Kim, J.K.;Kwon, Y.K.;Kim, J.W.;Park, Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.108-111
    • /
    • 2009
  • We have determined the electronic energy level alignment at the interface between 4,4'-bis-N-phenyl-1-naphthylamino biphenyl (NPB) and 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HAT-CN) using ultraviolet photoelectron spectroscopy (UPS). The highest occupied molecular orbital (HOMO) of 20 nm thick HAT-CN film was located at 3.8 eV below the Fermi level. Thus the lowest unoccupied molecular orbital (LUMO) is very close to the Fermi level. The HOMO position of NPB was only about 0.3 eV below Fermi level at NPB/HAT-CN interface. This enables an easy excitation of electrons from the NPB HOMO to the HAT-CN LUMO, creating electron-hole pairs across this organic-organic interface. We also study the interaction of HAT-CN with a few metallic surfaces including Ca, Cu, and ITO using UPS and ab-inito electronic structure calculation techniques.

  • PDF

Energy- and Time-Dependent Branching to Competing Paths in Coupled Unimolecular Dissociations of Chlorotoluene Radical Cations

  • Seo, Jongcheol;Kim, Seung Joon;Shin, Seung Koo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.833-838
    • /
    • 2014
  • The energy- and time-dependent branching to the competing dissociation paths are studied by theory for coupled unimolecular dissociations of the o-, m-, and p-chlorotoluene radical cations to $C_7{H_7}^+$ (benzylium and tropylium). There are four different paths to $C_7{H_7}^+$, three to the benzylium ion and one to the tropylium ion, and all of them are coupled together. The branching to the multiple paths leads to the multiexponential decay of reactant with the branching ratio depending on both internal energy and time. To gain insights into the multipath branching, we study the detailed kinetics as a function of time and internal energy on the basis of ab inito/RRKM calculations. The number of reaction steps to $C_7{H_7}^+$ is counted for each path. Of the three isomers, the meta mostly goes through the coupling, whereas the para proceeds with little or no coupling. In the beginning, some reactants with high internal energy decay fast to the benzylium ion without any coupling and others rearrange to the other isomers. Later on all three isomers dissociate to the products via long-lived intermediates. Thus, the reactant shows a multiexponential decay and the branching ratio varies with time as the average internal energy decreases with time. The reciprocal of the effective lifetime is taken as the rate constant. The resulting rate-energy curves are in line with experiments. The present results suggest that the coupling between the stable isomers is thermodynamically controlled, whereas the branching to the product is kinetically controlled.