• Title/Summary/Keyword: Ab initio MO

Search Result 31, Processing Time 0.02 seconds

MO Theoretical Studies on Nature and Reality of (Y-방향족성의 본질과 존재에 대한 분자궤도론적 연구)

  • Ikchoon Lee;Bon-Su Lee;Chan Kyung Kim
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.356-364
    • /
    • 1985
  • Ab initio calculations with STO-3G method were carried out on isomers of isobutylene dianion and dilithioisobutylene, and geometry, energy and Mulliken population were discussed. Energy of reaction, ${\Delta}$E, for isodesmic processes involving these species and relative heats of formation, ${\Delta}H_f$, estimated with ${\Delta}$E have shown that the contribution of "Y-aromaticity" to the structural stabilization of Y-type dianion is a tenuous one but the alkylation appears to proceed via the Y-type dilithio compound.

  • PDF

Ca/Si(111)-2×1에서 에피성장을 통한 Si단결정 성장가능성에 관한 Si원자의 흡착과 확산에 대한 전산모사연구

  • Yeo, Gang-Mo;Jeong, Seok-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.127.1-127.1
    • /
    • 2016
  • Si은 값싸고 넓은 시설기반을 갖추고 있어, 발전산업에서 태양광소자의 주원료로 널리 사용된다. 하지만 Si은 간접 띠틈을 Si의 특성을 개선하기 위해 최근 Si에 특정한 결함을 넣어 직접 띠틈으로 바꿔 광효율을 높이려는 시도가 있다. 2015년 초 Si단결정[111]으로 Seiwatz-chain 형태의 결함이 있다면 결함이 있는 Si(111)에 직접 띠틈이 생길 것 이라고 이론적으로 예상했다. 이러한 구조의 제작방법으로 Ca/Si(111)과 Si(111)을 접합 후 가열하여 Ca을 빼내는 방법을 제시했다[1]. 본 연구에서는 이 제작방법 외에 Ca/Si(111)-$2{\times}1$ 표면에서[2] 에피성장으로 결함이 유지된 Si단결정 형성가능성을 제일원리 계산을 통해 연구했다. 제일원리 계산방법으로는 VASP(Vienna Ab-initio Simulation Package)를 이용하였다. Si원자 한개, 두 개, 세 개가 흡착될 경우 원자당 흡착에너지는 각각 3.73 eV, 3.73 eV, 3.91 eV 였다. 따라서 Si원자는 무리형태로 흡착될 것으로 예상되어 결함을 유지하며 단결정으로 성장하기는 어려울 것으로 보인다.

  • PDF

Computational Study of the Molecular Structure, Vibrational Spectra and Energetics of the OIO Cation

  • Lee, Sang-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1855-1858
    • /
    • 2004
  • Molecular geometries for the cationic and neutral species of OXO (X=Cl, Br, and I) are optimized using the Hartree-Fock (HF) theory, the second order Moller-Plesset perturbation theory (MP2), the density functional theory with the B3LYP hybrid functional (B3LYP), and the coupled cluster theory using single and double excitation with a perturbational treatment of triplet excitation (CCSD[T]) methods, with two basis sets of triple zeta plus polarization quality. The single point calculations for these species are performed at the CCSD(T,Full) level. The harmonic vibrational frequencies for these species are calculated at the HF, MP2, B3LYP and CCSD(T) levels. The adiabatic ionization potential for OIO is calculated to be 936.7 kJ/mol at the CCSD(T,Full) level and the correct value is estimated to be around 945.4 kJ/mol.

Density Functional Theory Studies on the Electrophilic versus Electron Transfer Mechanisms of Aryl Vinyl Ethers

  • 김왕기;손창국;임선희;이순기;김창곤;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1177-1180
    • /
    • 1999
  • The ab initio SCF MO and density functional theory (DFT) studies are carried out on the electrophilic (1a) and electron transfer (1b) addition reactions to the vinyl double bond of aryl vinyl sulfides and ethers. In the electrophilic addition processes, a double bond shift from C3 = C4 to X = C3 occurs with occupation number (1.97) close to the normal two. Due to this shift direct conjugation between the cationic center, X = S or O, and the para electron-donor substituent becomes impossible so that the reaction energies (or log K) are correlated with σ rather than σ+. By contrast, radical cation formation leads to delocalization of the SOMO, a lone-pair πorbital on X, with four major resonance structures in which cationic charge as well as spin density is delocalized over C4 , X and C7 atoms. As a result, partial πbonds are formed over C1 -X and C3 - C4 with occupation numbers (0.82) lower than one. In two of the cannonical structures, III(Ⅹ) and III(X+), direct conjugation between the cationic center, X, and the para substituent is achieved so that a better correlation with σ+ rather than σis obtained. The SCF MO energies at the HF/3-21G* and HF/6-31G* levels lead to very much inferior Hammett correlations in the σ/ σ+ diagnostic criterion. In contrast, the ρvalues evaluated with the DFT energies can give reliable diagnostic distinction between the two addition mechanisms.

Ab-Initio Study of the Schottky Barrier in Two-Dimensional Lateral Heterostructures by Using Strain Engineering (인장변형에 따른 이차원 수평접합 쇼트키 장벽 제일원리 연구)

  • Hwang, Hwihyeon;Lee, Jaekwang
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1288-1292
    • /
    • 2018
  • Using density functional theory calculations, we study the Schottky barrier (SB) change in a two-dimensional (2D) lateral heterostructure consisting of semiconducting $2H-MoS_2$ and the ferromagnetic metal $2H-VS_2$ by applying a uniaxial tensile strain from 0% to 10%. We find that the SB for holes is much smaller than that for electrons and that SB height decreases monotonically under increasing tensile strain. In particular, we find that a critical strain where the spin-up SB for holes is abruptly reduced to zero exists near a strain of 8%, implying that only the spin-up holes are allowed to flow through the $MoS_2-VS_2$ lateral heterostructure. Our results provide fundamental information and can be utilized to guide the design of 2D lateral heterostructure-based novel rectifying devices by using strain engineering.

The Electronic Structure and Stability of the Heterofullerene :C(60-2x)(BN)x

  • Yee, Kyeong-Ae;Yi, Hong-Suk;Lee, Sang-San;Kang, Sung-Kwon;Song, Jin-Soo;Seong, See-Yearl
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.494-498
    • /
    • 2003
  • The transition from aromatics to heteroaromatics is very attractive since it provides an extremely large structural variety, the chemical functionality as well as the possibilities for electronic tuning of the fullerene properties. A synthesis of heterofullerenes in macroscopic quantities is unknown however the spectrometric detection of $C_{59}B$ has been reported. The electronic structures of $C_{(60-2x)}(BN)_x$ systems, isoelectronic with $C_{60}$ have been explored by Extended Hukel, AM1 and ab initio methods. The polyhedral assembly energy are 7.7 kcal greater than $C_{60}$ when one B-N unit is substituted with C-C unit. The assembly energies are getting bigger if more B-N unit is introduced. We focus on HOMO-LUMO energy gap and the stability effects in $C_{(60-2x)}(BN)_x$ with different compositions of $(BN)_x$ moiety. The bonding properties of the substituent atoms were investigated in detail.

Raman Spectroscopic Investigations of the Amide-Amide and Amide-Solvent Interactions (아미드-아미드 및 아미드-용매 상호작용에 관한 Raman 분광학적인 연구)

  • Jeong-A Yu;Young-Sang Choi
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.399-404
    • /
    • 1983
  • Raman spectra for the carbonyl stretching mode of the amides, and amide-solvent systems have been recorded to investigate the effect of alkyl substitutions at the carbonyl carbon and at the nitrogen on the amide hydrogen-bonding. The data have shown that the interaction affinities are in the order of amide-amide > amide-water > amide-alcohol in formamide system, and amide-water > amide-amide > amide-alcohol in acetamide and propionamide systems. The strength of the proton acceptor of the carbonyl oxygen is increased by the presence of alkyl group to the carbonyl carbon and the proton donorcity of the amide is decreased by the alkyl substitution at the nitrogen. The above results are in good agreement with the ab initio SCF MO calculation.

  • PDF

Determination of the Proton Transfer Energies of Glycine and Alanine and the Influence of Water Molecules

  • Gwon, O Yeong;Kim, Su Yeon;No, Gyeong Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.410-416
    • /
    • 1995
  • The proton transfer energies of gas phase glycine and alanine and those of hydrated glycine and alanine were calculated both with Hartree-Fock and $M{\Phi}ller-Plesset$ ab initio molecular orbital (MO) calculations with 6-31G** basis set. The transition states of the proton transfer of gas phase glycine was also investigated. For zwitterions, both for glycine and alanine, the water bound to -NH3+ site stabilize the complex more compared with the water bound to -CO2-. The proton transfer energy, ΔEpt, of glycine, alanine, mono-hydrated glycine, mono-hydrated alanine, di-hydrated glycine and di-hydrated alanine were obtained as 30.78 (MP2: 22.57), 31.43, 23.99 (MP2: 17.00), 24.98, 22.87, and 25.63 kcal/mol, respectively. The activation energy for proton transfer from neutral (Nt) glycine to zwitterion (Zw) glycine, Ea, was obtained as 16.13 kcal/mol and that for reverse process, Ear, was obtained as 0.85 kcal/mol. Since the transition state of the proton transfer of gas phase glycine locate near the glycine zwitterion on the potential energy surface and the shape of the potential well of the zwitterion is shallow, the zwitterion easily changed to neutral glycine through the proton transfer.

Computational Investigation of Isomeric and Conformeric Structures of Methyl Fluoroperoxide and Fluoromethyl Fluoroperoxides (Methyl fluoroperoxide와 fuoromethyl fluoroperoxides의 conformers와 isomers 구조에 대한 이론연구)

  • Lee, Kyoung-Min;Sung, Eun-Mo
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.405-411
    • /
    • 2011
  • The ab initio calculations for fluoromethyl fluoroperoxides have been carried out using MP2/6-311G(d,p) and B3LYP/6-311++G(d,p) method. The structural optimizations were performed for several isomers and conformers of methyl fluoroperoxide, $CH_3OOF$ and the vibrational frequencies were calculated. The most stable conformer of $CH_3OOF$ is skew form and has fairly short O-O bond distance. The trans and cis conformers have 8-12 kcal/mol higher energies than skew form and the other isomers are very unstable. The structures of $CH_2FOOF$, $CHF_2OOF$ and $CF_3OOF$ are also optimized and vibrational frequencies were calculated. These molecules also have skew forms as the lowest energy conformers. The O-O bond distances are longer and C-O bond distances are shorter than $CH_3OOF$, but the structural parameters are almost independent of the number of fluorine atoms in methyl group.

Intramolecular Hydrogen Bonding in 2-Fluorocyclopropanemethanol and 2-Chlorocyclopropanemethanol as Studied by ab Initio Calculation (2-Fluorocyclopropanemethanol과 2-Chlorocyclopropanemethanol의 분자 내 수소결합 가능성에 대한 이론연구)

  • Kwon, Min-Kyeong;Sung, Eun-Mo
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.3
    • /
    • pp.275-282
    • /
    • 2010
  • 2-Fluorocyclopropanemethanol and 2-chlorocyclopropanemethanol have been studied with MP2 and B3LYP methods with 6-311++G(d,p) basis set. The optimized structures show several stable conformers. The most stable conformer show the possibility of intramolecular hydrogen bonding, but the distance between $H{\cdots}F$, or $H{\cdots}Cl$ is longer than van der Waals radii and it may not be strong covalent bonding. Rather the second stable conformer has optimum structure for intramolecular hydrogen bonding but the energy of the conformer is 5 ~ 7 kJ higher than the most stable conformer. When the methanol group and the F or Cl atom have opposite direction, the conformers are less stable than the most stable conformer.