• 제목/요약/키워드: AZ31 합금

검색결과 261건 처리시간 0.021초

용융드래그방법을 이용한 마그네슘 합금 박판의 제조조건 확립 (Establishment of Manufacturing Conditions for Magnesium Alloy Thin Plate using Melt Drag Method)

  • 한창석;권용준
    • 한국재료학회지
    • /
    • 제31권9호
    • /
    • pp.511-518
    • /
    • 2021
  • An investigation is performed to clarify the manufacturing conditions of pure magnesium and AZ31 magnesium alloy thin plate using the melt drag method. By the melt drag method, suitable for magnesium molten metal, pure magnesium can be produced as a continuous thin plate with a thickness of 1.4 mm to 2.4 mm in the range of 5 m/min to 20 m/min of roll speed, and the width of the thin plate to the nozzle outlet width. AZ31 magnesium alloy is able to produce a continuous sheet of thickness in the range of 5 m/min to 30 m/min in roll circumferential speed, with a thickness of 0.6 mm to 1.6 mm and a width of the sheet matching the nozzle outlet width. In the magnesium melt drag method, the faster the circumferential speed of the roll, the shorter the contact time between the molten metal and the roll, and it is found that the thickness of the produced thin plate becomes thinner. The effect of the circumferential roll speed on the thickness of the thin plate is evident in the low roll circumferential region, where the circumferential speed is 30 m/min or less. The AZ31 thin plate manufactured by the melt drag method has a finer grain size as the thickness of the thin plate decreases, but it is currently judged that this is not the effect of cooling by the roll.

Computer Simulation for Die Filling Behavior of Semi-Solid Slurry of Mg Alloy

  • Lee, Dock-Young;Moon, Jung-Hwa;Seok, Hyun-Kwang;Kim, Sung-Bin;Kim, Ki-Bae
    • 한국주조공학회지
    • /
    • 제27권1호
    • /
    • pp.31-35
    • /
    • 2007
  • 본 연구에서는 Mg합금의 반응고성형 공정기술을 개발하기 위하여 여러 가지 전단속도와 냉각속도에 따른 Mg합금의 점도와 딕소트러픽 거동을 분석하였으며, 이를 전산모사연구와 비교 검토하였다. 전산모사연구에서는 미세조직과 공정변수를 고려한 반응고 슬러리의 유변학적 거동을 분석하였다. 반응고 온도영역에서의 Mg합금(AZ91D) 슬러리의 점도는 고상율에 따라 지수함수적으로 증가하였으며, 전단속도가 증가하면 감소하는 경향을 나타났다. Mg합금 슬러리의 유변학적 거동을 정확하게 분석하기 위하여 Carreau 모델을 사용하여 ANYCAST 프로그램에서 고압다이캐스팅용 금형으로의 Mg합금 반응고 슬러리의 충진거동을 모사하였다. 전산모사된 결과는 동일한 조건에서의 실제 실험결과와 잘 일치하였다.

마그네슘 합금 안경테의 Plasma Electrolytic Oxidation 표면처리 효과 연구 (A Study on Plasma Electrolytic Oxidation Surface Treatments for Magnesium Alloy Eyeglass Frames)

  • 김기홍
    • 한국안광학회지
    • /
    • 제15권4호
    • /
    • pp.313-317
    • /
    • 2010
  • 목적: 이 연구 목적은 가공한 마그네슘 합금 AZ31 안경테를 plasma electrolytic oxidation(PEO) 표면 처리 후 표면특성에 대하여 조사하는 것이다. 방법: Plasma electrolytic oxidation(PEO) 표면 처리는 DC 전압을 변화시키며 처리하였고, 피막의 상 분석은 X-ray 회절기로 측정하였고, 형태학적 미세구조는 주사전자현미경로 관찰하였다. 그리고 피막층에 존재하는 원소의 농도를 에너지 분산 X-선 스펙트럼으로 조사하였다. 결과: PEO 처리시 전압이 증가함에 따라 XRD 측정 결과 MgO 피크가 증가하였으며, SEM 사진에서는 표면의 산화피막이 조밀하게 생기는 것을 확인 할 수 있었다. 그리고 EDS에서 성분의 변화도 일치함을 보여주었다. 결론: PEO 산화피막층은 전압이 증가 할수록 MgO 화합물의 형성이 점점 증가하기 때문에 산화막의 결정화가 진행되며, 65V에 60초 처리 시 표면상태, 접촉각, 내식성 시험에서 가장 좋은 결과를 보여 주었다.

유동 해석을 통한 마그네슘 합금의 마찰교반용접 분석 연구 (Analysis of Friction Stir Welding Process of Mg alloy by Computational Fluid Dynamics)

  • 김무선;선승주;김정석
    • 한국산학기술학회논문지
    • /
    • 제18권12호
    • /
    • pp.679-684
    • /
    • 2017
  • 마찰 교반 용접(Friction Stir Welding)은 금속 소재 대상으로 용접 툴과 용접 재료의 마찰열을 이용하여 재료 융점 이하의 온도에서 접합하는 용접 기법이다. 이번 연구에서는 금속 접합시 쓰이는 마찰 교반 용접 기법을 활용하여 마그네슘 합금(AZ31)을 용접할 때, 용접시 발생하는 용접 대상인 마그네슘 합금의 온도 및 속도 변화에 대해 유동 해석 기법을 활용하여 분석하였다. 분석을 위해 유동 해석 툴인 플루언트를 활용하여 모델링 및 해석을 진행하였다. 먼저 용접 소재는 온도에 따라 변하는 고점도 뉴턴 유체로 가정하였으며, 나선형 홈이 있는 용접 툴의 회전에 의한 회전 유동 발생을 모사하기 위해 회전 영역과 정지 영역으로 구분하여 모사하였다. 용접 툴과 용접 재료 사이의 인터페이스는 마찰 및 미끄러짐 경계조건을 부여하여 용접 툴로의 열전달 효과를 고려하였다. 위의 유동 해석 모델링을 통한 과도 해석 결과로부터 시간의 변화에 따른 용접 소재의 속도와 온도 특성을 파악할 수 있었다.

Mg 합금의 성형성에 미치는 결정립 크기의 영향 (Grain Size Effect on Formability of Mg alloys)

  • 김태옥;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.448-451
    • /
    • 2008
  • Magnesium alloys still have a lot of technical challenges to be solved for more applications. There have been many research activities to enhance formability of magnesium alloys. One is to design new alloy composition having better formability. Also, low formability of wrought alloys can be improved by optimizing the processing variables. In the present study, effect of process variables such as forging temperature and forging speed were investigated to forgeability of three different magnesium alloys such as AZ31, AZ61 and ZK60. To understand the effect of process variables more specifically, both numerical and experimental works have been carried out on the model which contains both upsetting and extrusion geometries. Forgeability of magnesium alloys was found to depend more on the forging speed rather than temperature. Forged sample showed a significant activity of twinning, which was found to be closely related with flow uniformity.

  • PDF

경량 밸브 제조용 마그네슘 합금의 고온 성형 특성 (Characteristics of Hot Forming of Magnesium Alloys for Light-weight Valves)

  • 박준홍;이준호
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.173-179
    • /
    • 2012
  • In recent years, Magnesium(Mg) and its alloys have become a center of special interest in the automotive industry. Due to their high specific mechanical properties, they offer a significant weight saving potential in modern vehicle constructions. Most Mg alloys show very good machinability and processability, and even the most complicated die casting parts can be easily produced. In this study, Microstructure, Vickers hardness and tensile tests were examined and performed for each specimen to verify effects of forming conditions. Also to verify upsettability and forming limit of the specimen at room temperature and elevated temperature, upsetting experiments were performed. For comparison, experiments at elevated temperature were performed for various Mg alloy, such as AZ31, AZ91, and AM50. The experimental results were compared with those of CAE analysis to propose forming limit of Magnesium alloys.

열간 압연 한 Mg합금의 미세조직과 감쇠능에 미치는 열처리의 영향 (Effect of Heat Treatment on the Microstructure and Damping Capacity of Hot Rolled Magnesium Alloys)

  • 이규현;김권후;강창룡
    • 동력기계공학회지
    • /
    • 제18권4호
    • /
    • pp.66-71
    • /
    • 2014
  • In this study, effect of heat treatment on the microstructure and damping capacity of hot rolled magnesium alloys was investigated. The microstructure of hot rolled magnesium consisted of dendrite structure and $Mg_{17}Al_{12}$ compounds precipitated along the grain boundry. The dendrite structure was dissipated and $Mg_{17}Al_{12}$ compounds was decomposed by annealing treatment, and then they dissolved in ${\alpha}-Mg$. With an increasing the annealing temperature and time, damping capacity was slowly increased by the growth of grain size and decreasing of defects induced by hot rolling. Two kinds of magnesium alloys AZ 31 and AZ 61 after annealing showed no difference in damping capacity.

열간 압연한 AZ31 마그네슘합금 판재의 미세조직 발달에 관한 연구 (A Study on Microstructural Evolution of Hot Rolled AZ31 Magnesium Alloy Sheets)

  • 김수현;임창동;유봉선;서영명;정인상
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.63-71
    • /
    • 2004
  • Recently, a sheet forming process of Mg alloys is highlighted again due to increasing demand for Mg wrought alloys in the applications of casings of mobile electronics and outer-skins of light-weight transportation. Microstructure control is essential for the enhancement of workability and formability of Mg alloy sheets. In this research, AZ31 Mg alloy sheets were prepared by hot rolling process and the rolling condition dependency of the microstructure and texture evolution was studied by employing a conventional rolling mill as well as an asymmetric rolling mill. When rolled through multiple passes with a small reduction per pass, fine-grained and homogeneous microstructure evolved by repetitive dynamic and static recrystallization. With higher rolling temperature, dynamic recrystallization was initiated in lower reduction. However with increasing reduction per pass, deformation was locallized in band-like regions, which provided favorable nucleation sites f3r dynamic recrystallization. Through post annealing process, the microstructures could be transformed to more equiaxed and homogeneous grain structures. Textures of the rolled sheets were characterized by $\{0002\}$ basal plane textures and retained even after post annealing. On the other hand, asymmetrically rolled and subsequently annealed sheets exhibited unique annealing texture, where $\{0002\}$ orientation was rotated to some extent to the rolling direction and its intensity was reduced.

  • PDF

고상접합을 이용한 Al/Mg 합금의 이종 용접 (Solid State Joining Processes for Dissimilar Joints of Mg/Al Alloys)

  • 김흥주;김성욱;천창근;장웅성
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.41-41
    • /
    • 2009
  • To evaluate the applicability of dissimilar joining between Mg and Al alloys in automobile manufacturing process, solid state joining processes such as magnetic pulse welding(MPW), friction stir welding(FSW) and friction spot joining(FSJ) were attempted successfully. MPW process has been concentrated mainly on round section tube to tube and tube to bar welds. AZ31 Mg alloy has been successfully welded to pure Al A1070 as well as to Al alloy A3003. While, for friction stir welding of dissimilar sheet joints, AZ31B/A6061 with the thickness of 2mm were used and a square butt joint with a good quality was obtained at the conditions of 0.8mm/sec of travel speed and tool rotation speed of 850rpm. The maximum tensile strength of 179 MPa, which was about 80 % of the Mg base metal tensile strength, has been obtained. Finally, friction spot joining was attempted to make a dissimilar lap joint between AZ31(0.8mm) and A6061(1mm), while the joint exhibited the same level of tensile shear strength as that of similar Mg joint.

  • PDF

고온에서 마그네슘 합금의 크리이프 특성 (Creep characteristic of Mg alloy at high temperature)

  • 안정오;박경도;곽재섭;강대민
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.39-44
    • /
    • 2008
  • Magnesium alloys have given high attention to the industry of light-weigh as automobile and electronics with aluminium, titanium and composite alloys due to their high strength, low specific density and good damping characteristics. But the magnesium contained structures under high temperature have the problems related to creep deformation and rupture life, which is a reason of developing the new material against creep deformation to use them safely. The purpose of this study is to predict the creep deformation mechanism and rupture time of AZ31 magnesium alloy. For this, creep tests of AZ31 magnesium alloy were done under constant creep load and temperature with the equipment including automatic temperature controller with acquisition computer. The apparent activation energy Qc and the applied stress exponent n, rupture life have been determined during creep of AZ31 Mg alloy over the temperature range of $150^{\circ}C$ to $300^{\circ}C$. In order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller, whose data are sent to computer. At around the temperature of $150^{\circ}C{\sim}300^{\circ}C$ the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy for the creep deformation was nearly equal and a little low, respectively, to that of the self diffusion of Mg alloy.

  • PDF