• Title/Summary/Keyword: AZ31 합금

Search Result 261, Processing Time 0.027 seconds

Characteristics of Environmentally-Friendly Conversion Coating of AZ31 Magnesium Alloy by a Alkaline Phosphate-Permanganate Solution (알카리성 인산-과망간산 용액을 이용한 AZ31 마그네슘 합금의 친환경 화성 처리 및 화성 피막의 특성 평가)

  • Kim, Myung-Hwan;Lee, Man-Sig;Kwag, Sam-Tag;Moon, Myung-Jun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.82-88
    • /
    • 2011
  • A uniform chromium-free conversion coating treated with an alkaline phosphate- permanganate solution was formed on the AZ 31 magnesium alloy. The effect of acid pickling on the morphology and on the corrosion resistance of the alkaline phosphate-permanganate conversion coating was investigated. The chemical composition and phase structure of conversion coating layer were determined via optical microscopy, SEM, EDS, XPS and XRD. Results show that the conversion coatings are relatively uniform and continuous, with thickness 1.8 to $2.4\;{\mu}m$. The alkaline phosphate-permanganate conversion coating was mainly composed of elements Mg, O, P, Al and Mn. The conversion-coated layers were stable compounds of magnesium oxide and spinel ($MgAl_2O_4$). These compounds were excellent inhibitors to corrosion. The electrochemical corrosion behaviors of coatings in 3.5 wt.% NaCl solutions were evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization technique. EIS results showed a polarization resistance of $0.1\;k{\Omega}$ for the untreated Mg and $16\;k{\Omega}$ for the alkaline phosphate-permanganate conversion treatment sample, giving an improvement of about 160 times. The results of the electrochemical measurements demonstrated that the corrosion resistance of the AZ 31 magnesium alloy was improved by the alkaline phosphate-permanganate conversion treatment.

Effects of Mg-Al Alloy and Pure Ti on High Temperature Wetting and Coherency on Al Interface Using the Sessile Drop Method (정적법을 이용한 Mg-Al계 합금과 순수 Ti의 고온 젖음현상 및 Al계면에서의 정합성에 미치는 영향)

  • Han, Chang-Suk;Kim, Woo-Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.38-42
    • /
    • 2021
  • In this study, high temperature wetting analysis and AZ80/Ti interfacial structure observation are performed for the mixture of AZ80 and Ti, and the effect of Al on wetting in Mg alloy is examined. Both molten AZ80 and pure Mg have excellent wettability because the wet angle between molten droplets and the Ti substrate is about 10° from initial contact. Wetting angle decreases with time, and wetting phenomenon continues between droplets and substrate; the change in wetting angle does not show a significant difference when comparing AZ80-Ti and Mg-Ti. As a result of XRD of the lower surface of the AZ80-Ti sample, in addition to the Ti peak of the substrate, the peak of TiAl3, which is a Ti-Al intermetallic compound, is confirmed, and TiAl3 is generated in the Al enrichment region of the Ti substrate surface. EDS analysis is performed on the droplet tip portion of the sample section in which pure Mg droplets are dropped on the Ti substrate. Concentration of oxygen by the natural oxide film is not confirmed on the Ti surface, but oxygen is distributed at the tip of the droplet on the Mg side. Molten AZ80 and Ti-based compound phases are produced by thickening of Al in the vicinity of Ti after wetting is completed, and Al in the Mg alloy does not affect the wetting. The driving force of wetting progression is a thermite reaction that occurs between Mg and TiO2, and then Al in AZ80 thickens on the Ti substrate interface to form an intermetallic compound.

Formability of AZ31 magnesium sheet alloy of warm deep drawing (AZ31 마그네슘합금의 온간디프드로잉시 판재성형특성)

  • Rhee M. S.;Kang D. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.377-380
    • /
    • 2005
  • In this study, the experiments of warm deep drawing were done with heated die, and with heated die and cooled punch in order to investigate the formability of ZA31 magnesium sheet alloy of warm deep drawing. For this, warm deep drawing experiments were executed under various temperature, punch velocity and blankholder force. The results of warm deep drawing with heated die showed that fracture occurred punch part at punch velocity of 75mm/min and punch stroke of 10mm under temperature of $100^{\circ}C\~250^{\circ}C$, but did not occure under temperature of $275^{\circ}C\~400^{\circ}C$. And fracture at punch stroke of 25mm did not occurre at punch part under punch velocity of 30mm/min and $250^{\circ}C$, but occured under punch velocity of 75 and 125 mm/min. Also the results of warm deep drawing with heated die and cooled punch showed that the temperature happening maximum height under punch velocity of 10-100mm/min was $225-250^{\circ}C$. And necking occurred at punch shoulder under $20\~150^{\circ}C$, but at die wall under $200\~300^{\circ}C$.

  • PDF

Correlation between crystalline phase and corrosion resistance of Mg alloy with different PEO conditions. I. Crystalline phase (Mg 합금의 PEO 공정 조건에 따른 산화피막 결정상과 내부식성에 대한 연구 I. 결정상)

  • Kim, Bae-Yeon;Kim, Yong-Nam;Jeon, Min-Seok;Ham, Jae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.2
    • /
    • pp.74-79
    • /
    • 2018
  • To increase corrosion resistance of Mg alloy, AZ31 and AZ91 were PEO treated with different applied voltage and time conditions. We used Na-P and Na-Si system electrolyte. Crystalline phase and morphology were investigated. MgO was Most common crystal phase and vitreous phase could be found. Crystalline phase of $Na_{3.59}Mg_{2.71}(PO_4)_3$ and $Mg_2SiO_4$ also could be found. Porosity of oxidized surface tends to decrease with increasing PEO applied voltage, treat time and concentration of electrolyte, after then, size of pore increased and total number of pore decreased, distinctly.

Corelation between crystalline phase and corrosion resistance of Mg alloy with different PEO conditions. II. Corrosion resistance (Mg 합금의 PEO 공정 조건에 따른 산화피막 결정상과 내부식성에 대한 연구 II. 내부식성)

  • Kim, Bae-Yeon;Kim, Yong-Nam;Jeon, Min-Seok;Ham, Jae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.2
    • /
    • pp.80-84
    • /
    • 2018
  • Mg alloys AZ31 and AZ91 were Plasma-Electrolytic-Oxidized in Na-P and Na-Si system electrolyte at various concentration, applied voltage and time. Thickness and surface roughness of PEO coating were examined. Salt spraying test were carried out to compare their corrosion resistances. Generally, corrosion resistances rate were increased as thickness and crystallinity increasing. Size of pore being larger, long term corrosion resistance decreased. It is turned out that $Mg_2SiO_4$ and other crystalline phase rather than MgO might be increase corrosion resistance dramatically.

Process Development for Automotive Hybrid Hood using Magnesium Alloy AZ31B Sheet (마그네슘 합금 AZ31B 판재를 이용한 자동차 하이브리드 후드 개발 프로세스)

  • Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.160-166
    • /
    • 2011
  • Weight reduction while maintaining functional requirements is one of the major goals in the automotive industry. The use of lightweight magnesium alloys offers great potential for reducing weight because of the low density of these alloys. However, the formability and the surface quality of the final magnesium alloy product for auto-body structures are not acceptable without a careful optimization of the design parameters. In order to overcome some of the main formability limitations in the stamping of magnesium alloys, a new approach, the so-called "hybrid technology", has been recently proposed for body-in-white structural components. Within this approach, necessary level of mechanical joining can be obtained through the use of lightweight material-steel adhesion promoters. This paper presents the development process of an automotive hybrid hood assembly using magnesium alloy sheets. In the first set of material pairs, the selected materials are magnesium alloy AZ31B alloy and steel(SGCEN) as inner and outer panels, respectively. In order to optimize the design of the inner panel, the stamping process was analyzed with the finite element method (FEM). Laser welding by CW Nd:YAG were used to join the magnesium alloy sheets. Based on the simulation results and mechanical test results of the joints, the determination of die design variables and their influence on formability were discussed. Furthermore, a prototype based on the proposed design was manufactured and the static stiffness test was carried out. The results demonstrate the feasibility of the proposed hybrid hood with a weight reduction of 25.7%.

Application of Friction Stir Process to Improve Surface Reliability of Light Weight Magnesium Alloy (경량 마그네슘 합금의 표면 신뢰성 향상을 위한 마찰교반공정의 적용)

  • Gil, Ung-Chan;Kim, Jae-Yeon;Hyun, Chang-Young
    • Journal of Applied Reliability
    • /
    • v.16 no.2
    • /
    • pp.155-161
    • /
    • 2016
  • Purpose: Purpose of this study is to analyze the effect of particle size as well as number of pass on surface microstructure and hardness of SiC(p)/AZ31 surface composite fabricated by friction stir process (FSP). Method: SiC(p)/AZ31 surface composite containing different size of SiC particle (i. e., $2{\mu}m$ and $8{\mu}m$) was fabricated by multi-pass FSP. Microstructure was observed by scanning electron microscope and surface hardness was determined by Vickers hardness tester. Results: For all the FSPed specimens with and without hardening particles, grain size was refined due to dynamic recrystallization behavior. Surface hardness was observed to increase with decreasing particle size in the composite layer. Increasing number of FSP pass was effective for homogeneous distribution of the hardening particles and for resulting increase in surface hardness. Conclusion: FSP was effective to modify surface microstructure for improving surface hardness of SiC/AZ31 composite.

Evaluation of Warm Deep Drawability of Magnesium Alloy AZ31 Sheet Using Solid-Type Lubricants (고체 윤활제를 사용한 마그네슘 합금 AZ31 판재 온간 디프 드로잉의 성형성 평가)

  • Kim, H.K.;Kim, J.D.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.453-458
    • /
    • 2006
  • While the die casting has been mainly used to manufacture the magnesium alloy parts, the press forming is considered as an alternative to the die casting for saving the manufacturing cost and improving the structural strength of the magnesium alloy parts. Because the magnesium alloy has low formability at room temperature, forming at elevated temperatures is a necessary condition to obtain the required material flow for press forming. However, the elevated temperature forming does not always guarantee the sufficient formability under the dry friction condition because the surface damage such as scratch or wear may accelerate the material failure. In the present study, the solid-type lubricants such as PTFE, graphite and $MoS_2$ were tested for the square cup warm deep drawing using the magnesium alloy AZ31 sheet. The formability improvement by using the lubricant was examined by comparing the maximum deep drawing depth using the PTFE against no lubricant. The formability difference for the different lubricant was also examined based on the maximum deep drawing depth.

Prediction of Rolling Texture for Mg Alloy AZ31B Sheet using Finite Element Polycrystal Model (유한요소 다결정 모델을 이용한 마그네슘 합금 AZ31B 판재의 압연 집합 조직 예측)

  • Won S. Y.;Kim Y. S.;Na K. H.;Takahashi Hiroshi
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.72-82
    • /
    • 2004
  • The deformation mechanism of hexagonal close-packed materials is quite complicate including slips and twins. A deformation mechanism, which accounts for both slip and twinning, was investigated for polycrystalline hop materials. The model was developed in a finite element polycrystal model formulated with initial strain method where the stiffness matrix in FEM is based on the elastic modulus. We predicted numerically the texture of Mg alloy(AZ31B) sheet by using FEM based on crystal plasticity theory. Also, we introduced the recrystallized texture employed the maximum energy release theory after rolling. From the numerical study, it was clarified that the shrink twin could not be the main mechanism for shortening of c-axis, because the lattice rotation due to twin rejects fur c-axis to become parallel to ND(normal direction of plate). It was showed that the deformation texture with the pyramidal slip gives the ring type pole figure having hole in the center.

  • PDF

Friction Behavior of DLC Coating Slid Against AZ31 Magnesium Alloy at Various Temperatures (마그네슘 합금에 대한 DLC 코팅의 온도에 따른 마찰기구 해석)

  • Gwon, H.;Kim, M. G.;Hur, H. L.;Kim, Y.-S.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.405-410
    • /
    • 2015
  • Sheet-forming of Mg alloys is conducted at elevated temperatures (250℃) due to the low formability at room temperature. The high-temperature process often gives rise to surface damage on the alloy (i.e. galling.) In the current study, the frictional characteristics of DLC coating slid against an AZ31 Mg alloy at various temperatures were investigated. The coating has been used widely for low-friction processes. Dry-sliding friction and galling characteristics of an AZ31 Mg alloy (disk), which slid against uncoated and a DLC-coated STD-61 steel (pin), were investigated using a reciprocating-sliding tribometer at room temperature and 250℃. To represent the real sliding phenomena during a sheet metal forming process, single-stroke tests were used (10mm stroke length) rather than a reciprocating long sliding-distance test. The DLC coating suppressed adhesion between the alloy and the tool steel at room temperature, and exhibited a low friction coefficient. However, during sliding at 250℃, severe adhesion occurred between the two surfaces, which resulted in a high friction coefficient and galling.