• Title/Summary/Keyword: AWS observed rainfall

Search Result 25, Processing Time 0.028 seconds

Development and Evaluation of a Real Time Runoff Modelling System using Weather Radar and Distributed Model (기상레이더와 분포형 모형을 이용한 실시간 유출해석 시스템 개발 및 평가)

  • Choi, Yun Seok;Kim, Kyung Tak;Kim, Joo Hun
    • Journal of Wetlands Research
    • /
    • v.14 no.3
    • /
    • pp.385-397
    • /
    • 2012
  • A grid based physically distributed model analyzes rainfall-runoff using physical parameters and grid-typed spatial and hydrological data. This study have developed a real time runoff modelling system using GRM RT(Grid based Rainfall-runoff Model Real Time) which is a real time flow analysis module in GRM, a grid based physically distributed rainfall-runoff model. Weather radar data received in real time are calibrated by using real time AWS from Korea Meteorological Administration(KMA), and they are applied to real time runoff modeling. And the runoff model is calibrated by using observed discharges from a water level gauge in real time. This study have designed and implemented the databases necessary to construct the real time runoff modelling system, and established the process of a real time runoff modelling. And the performances of the developed system have been evaluated. The system have been applied to Nerinheon watershed located in the upstream of Soyanggang Dam and the application results are evaluated.

Rainfall Adjustment on Duration and Topographic Elevation (지속시간 및 표고에 따른 강우량 보정에 관한 연구)

  • Um, Myoung-Jin;Cho, Won-Cheol;Rim, Hae-Wook
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.7
    • /
    • pp.511-521
    • /
    • 2007
  • The objective of this study is to develop a method of rainfall adjustment on duration and topographic elevation for rainfall data in Jejudo. The method of rainfall adjustment is based on the polynomial regression analysis for the hourly rainfall data and the distribution of observatories of korea meteorological administration. As the results of modeling have shown, duration and rainfall are more correlated than topographic elevation and rainfall, and the model which considers only an elevation exaggerates the amount of rainfall adjustment. Hence the model of duration-elevation-rainfall is more competitive to the natural rainfall event than the model of topographic elevation-rainfall. However this model require to supplement a small number of rainfall observatories and short observed period.

Application of Urban Stream Discharge Simulation Using Short-term Rainfall Forecast (단기 강우예측 정보를 이용한 도시하천 유출모의 적용)

  • Yhang, Yoo Bin;Lim, Chang Mook;Yoon, Sun Kwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.69-79
    • /
    • 2017
  • In this study, we developed real-time urban stream discharge forecasting model using short-term rainfall forecasts data simulated by a regional climate model (RCM). The National Centers for Environmental Prediction (NCEP) Climate Forecasting System (CFS) data was used as a boundary condition for the RCM, namely the Global/Regional Integrated Model System(GRIMs)-Regional Model Program (RMP). In addition, we make ensemble (ESB) forecast with different lead time from 1-day to 3-day and its accuracy was validated through temporal correlation coefficient (TCC). The simulated rainfall is compared to observed data, which are automatic weather stations (AWS) data and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA 3B43; 3 hourly rainfall with $0.25^{\circ}{\times}0.25^{\circ}$ resolution) data over midland of Korea in July 26-29, 2011. Moreover, we evaluated urban rainfall-runoff relationship using Storm Water Management Model (SWMM). Several statistical measures (e.g., percent error of peak, precent error of volume, and time of peak) are used to validate the rainfall-runoff model's performance. The correlation coefficient (CC) and the Nash-Sutcliffe efficiency (NSE) are evaluated. The result shows that the high correlation was lead time (LT) 33-hour, LT 27-hour, and ESB forecasts, and the NSE shows positive values in LT 33-hour, and ESB forecasts. Through this study, it can be expected to utilizing the real-time urban flood alert using short-term weather forecast.

An analysis of Characteristics of Heavy Rainfall Events over Yeongdong Region Associated with Tropopause Folding (대류권계면 접힘에 의한 영동지방 집중호우사례의 특성분석)

  • Lee, Hye-Young;Ko, Hye-Young;Kim, Kyung-Eak;Yoon, Ill-Hee
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.354-369
    • /
    • 2010
  • The synoptic and kinematic characteristics of a heavy rainfall that occurred in Gangneung region on 22 to 24 October 2006 were investigated using weather maps, infrared images, AWS observation data and NCEP global final analyses data. The total amount of rainfall observed in the region for the period was 316.5 mm, and the instanteneous maximum wind speed was $63.7m\;s^{-1}$. According to the analysis of weather maps, before the starting of the heavy rainfall, an extratropical low pressure system was developed in the middle region of the Korean Peninsula, and an inverted trough was formed in the northern region of the peninsula. In addition, a jet stream on the upper charts of 300 hPa was located over the Yellow Sea and the southern boundary of the peninsula. A cutoff low in the cyclonic shear side of the upper jet streak, which was linked to an anomaly of isentropic potential vorticity, was developed over the northwestern part of the peninsula. And there are analyzed potential vorticity and wind, time-height cross section of potential vorticity, vertical air motion, maximums of the divergence and convergence and vertical distribution of potential temperature in Gangneung region. The analyzed results of the synoptic conditions and kinematic processes strongly suggest that the tropopause folding made a significant role of initializing the heavy rainfall.

Application of machine learning for merging multiple satellite precipitation products

  • Van, Giang Nguyen;Jung, Sungho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.134-134
    • /
    • 2021
  • Precipitation is a crucial component of water cycle and play a key role in hydrological processes. Traditionally, gauge-based precipitation is the main method to achieve high accuracy of rainfall estimation, but its distribution is sparsely in mountainous areas. Recently, satellite-based precipitation products (SPPs) provide grid-based precipitation with spatio-temporal variability, but SPPs contain a lot of uncertainty in estimated precipitation, and the spatial resolution quite coarse. To overcome these limitations, this study aims to generate new grid-based daily precipitation using Automatic weather system (AWS) in Korea and multiple SPPs(i.e. CHIRPSv2, CMORPH, GSMaP, TRMMv7) during the period of 2003-2017. And this study used a machine learning based Random Forest (RF) model for generating new merging precipitation. In addition, several statistical linear merging methods are used to compare with the results of the RF model. In order to investigate the efficiency of RF, observed data from 64 observed Automated Synoptic Observation System (ASOS) were collected to evaluate the accuracy of the products through Kling-Gupta efficiency (KGE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI). As a result, the new precipitation generated through the random forest model showed higher accuracy than each satellite rainfall product and spatio-temporal variability was better reflected than other statistical merging methods. Therefore, a random forest-based ensemble satellite precipitation product can be efficiently used for hydrological simulations in ungauged basins such as the Mekong River.

  • PDF

Analysis of Extreme Rainfall Distribution Scenarios over the Landslide High Risk Zones in Urban Areas (도심지 토사재해 고위험지역 극치강우 시간분포 시나리오 분석)

  • Yoon, Sunkwon;Jang, Sangmin;Rhee, Jinyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.57-69
    • /
    • 2016
  • In this study, we analyzed the extreme rainfall distribution scenarios based on probable rainfall calculation and applying various time distribution models over the landslide high risk zones in urban areas. We used observed rainfall data form total 71 ASOS (Automated Synoptic Observing System) station and AWS (Automatic Weather Station) in KMA (Korea Meteorological Administration), and we analyzed the linear trends for 1-hr and 24-hr annual maximum rainfall series using simple linear regression method, which are identified their increasing trends with slopes of 0.035 and 0.660 during 1961-2014, respectively. The Gumbel distribution was applied to obtain the return period and probability precipitation for each duration. The IDF (Intensity-Duration-Frequency) curves for landslide high risk zones were derived by applying integrated probability precipitation intensity equation. Results from IDF analysis indicate that the probability precipitation varies from 31.4~38.3 % for 1 hr duration, and 33.0~47.9 % for 24 hr duration. It also showed different results for each area. The $Huff-4^{th}$ Quartile method as well as Mononobe distribution were selected as the rainfall distribution scenarios of landslide high risk zones. The results of this study can be used to provide boundary conditions for slope collapse analysis, to analyze sediment disaster risk, and to use as input data for risk prediction of debris flow.

The Distribution of Precipitation in Donghae-Shi (동해시의 강수 분포 특성)

  • 이장렬
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 1999
  • This study examined the spatial distribution of precipitation in Donghae-Shi. The daily, monthly precipitaion on the 2 stations, 3 AWS(Automatic Weather Station) were analyzed by altitudinal distribution, the air pressure type and days of daily precipitation. The results of the study are as follows. 1 Hour greatest precipitation is 62.4mm(1994. 10. 12), Daily greatest precipitation, 200mm(1994. 10. 12), Monthly greatest precipitation, 355.5mm(1994. 10), Maximum depth of snow fall, 35.5cm(1994. 1. 29) in Donghae-Shi, 1993∼1997. Altitudinal distribution of precipitation in Summer tends to have more precipitation at higher altitude, in Winter, high mountains and coast have more precipitation than other sites do. The heavy rainfall in Donghae-Shi is mainly formed by a Typhoon, next is Jangma front. The number of consecutive days of daily precipitation $\geq$20mm is 81days, 44days of those appeared in Summer season. The synoptic environment causes the difference in observed the heavy snowfall amount between high mountains and coast.

  • PDF

Application of Artificial Neural Network to Improve Quantitative Precipitation Forecasts of Meso-scale Numerical Weather Prediction (중규모수치예보자료의 정량적 강수추정량 개선을 위한 인공신경망기법)

  • Kang, Boo-Sik;Lee, Bong-Ki
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.97-107
    • /
    • 2011
  • For the purpose of enhancing usability of NWP (Numerical Weather Prediction), the quantitative precipitation prediction scheme was suggested. In this research, precipitation by leading time was predicted using 3-hour rainfall accumulation by meso-scale numerical weather model and AWS (Automatic Weather Station), precipitation water and relative humidity observed by atmospheric sounding station, probability of rainfall occurrence by leading time in June and July, 2001 and August, 2002. Considering the nonlinear process of ranfall producing mechanism, the ANN (Artificial Neural Network) that is useful in nonlinear fitting between rainfall and the other atmospheric variables. The feedforward multi-layer perceptron was used for neural network structure, and the nonlinear bipolaractivation function was used for neural network training for converting negative rainfall into no rain value. The ANN simulated rainfall was validated by leading time using Nash-Sutcliffe Coefficient of Efficiency (COE) and Coefficient of Correlation (CORR). As a result, the 3 hour rainfall accumulation basis shows that the COE of the areal mean of the Korean peninsula was improved from -0.04 to 0.31 for the 12 hr leading time, -0.04 to 0.38 for the 24 hr leading time, -0.03 to 0.33 for the 36 hr leading time, and -0.05 to 0.27 for the 48 hr leading time.

Predicting Probability of Precipitation Using Artificial Neural Network and Mesoscale Numerical Weather Prediction (인공신경망과 중규모기상수치예보를 이용한 강수확률예측)

  • Kang, Boosik;Lee, Bongki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.485-493
    • /
    • 2008
  • The Artificial Neural Network (ANN) model was suggested for predicting probability of precipitation (PoP) using RDAPS NWP model, observation at AWS and upper-air sounding station. The prediction work was implemented for flood season and the data period is the July, August of 2001 and June of 2002. Neural network input variables (predictors) were composed of geopotential height 500/750/1000 hPa, atmospheric thickness 500-1000 hPa, X & Y-component of wind at 500 hPa, X & Y-component of wind at 750 hPa, wind speed at surface, temperature at 500/750 hPa/surface, mean sea level pressure, 3-hr accumulated precipitation, occurrence of observed precipitation, precipitation accumulated in 6 & 12 hrs previous to RDAPS run, precipitation occurrence in 6 & 12 hrs previous to RDAPS run, relative humidity measured 0 & 12 hrs before RDAPS run, precipitable water measured 0 & 12 hrs before RDAPS run, precipitable water difference in 12 hrs previous to RDAPS run. The suggested ANN has a 3-layer perceptron (multi layer perceptron; MLP) and back-propagation learning algorithm. The result shows that there were 6.8% increase in Hit rate (H), especially 99.2% and 148.1% increase in Threat Score (TS) and Probability of Detection (POD). It illustrates that the suggested ANN model can be a useful tool for predicting rainfall event prediction. The Kuipers Skill Score (KSS) was increased 92.8%, which the ANN model improves the rainfall occurrence prediction over RDAPS.

Study on Temporal and Spatial Characteristics of Summertime Precipitation over Korean Peninsula (여름철 한반도 강수의 시·공간적 특성 연구)

  • In, So-Ra;Han, Sang-Ok;Im, Eun-Soon;Kim, Ki-Hoon;Shim, JaeKwan
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.159-171
    • /
    • 2014
  • This study investigated the temporal and spatial characteristics of summertime (June-August) precipitation over Korean peninsula, using Korea Meteorological Administration (KMA)is Automated Synoptic Observing System (ASOS) data for the period of 1973-2010 and Automatic Weather System (AWS) data for the period of 1998-2010.The authors looked through climatological features of the summertime precipitation, then examined the degree of locality of the precipitation, and probable precipitation amount and its return period of 100 years (i.e., an extreme precipitation event). The amount of monthly total precipitation showed increasing trends for all the summer months during the investigated 38-year period. In particular, the increasing trends were more significant for the months of July and August. The increasing trend of July was seen to be more attributable to the increase of precipitation intensity than that of frequency, while the increasing trend of August was seen to be played more importantly by the increase of the precipitation frequency. The e-folding distance, which is calculated using the correlation of the precipitation at the reference station with those at all other stations, revealed that it is August that has the highest locality of hourly precipitation, indicating higher potential of localized heavy rainfall in August compared to other summer months. More localized precipitation was observed over the western parts of the Korean peninsula where terrain is relatively smooth. Using the 38-years long series of maximum daily and hourly precipitation as input for FARD2006 (Frequency Analysis of Rainfall Data Program 2006), it was revealed that precipitation events with either 360 mm $day^{-1}$ or 80 mm $h^{-1}$ can occur with the return period of 100 years over the Korean Peninsula.