The objective of this study is to evaluate the valid forecast lead time and the accuracy when AWS observed rainfall data are used for real-time river flow forecast. For this, Namhan river basin is selected as study area and SURF model is constructed during flood seasons in 2006~2009. The simulated flow with and without the assimilation of the observed flow data are well fitted. Effectiveness index (EI) is used to evaluate amount of improvement for the assimilation. EI at Chungju, Dalcheon, Hoengsung and Yeoju sites as evaluation points show 32.08%, 51.53%, 39.70% and 18.23% improved, respectively. In the results of the forecasted values using the limited observed rainfall data in each forecast time before peak flow occur, the peak flow under the 20% tolerance range of relative error at Chungju, Dalcheon, Hoengsung and Yeoju sites can be simulated in forecast time-11h, 2h, 3h and 5h and the flow volume in the same condition at those sites can be simulated in forecast time-13h, 2h, 4h and 9h, respectively. From this results, observed rainfall data can be used for real-time peak flow forecast because of basin lag time.
The purpose of this study is to evaluate hydrological applicability of spatially observed rainfall distribution data by the TRMM/PR (Tropical Rainfall Measuring Mission / Precipitation Radar). For this study, firstly, TRMM/PR data (Y) of the Yongdam-Dam Watershed (930.38$km^2$) was extracted and secondly, TRMM/PR data and the rainfall data (X) by AWS (Automatic Weather Station) were compared by executing a correlation analysis. As a result, the regression equations were deduced as two parts (under 60mm/day : Y = 18.55X-0.53, over 60mm/day : Y = 3.11X+51.16). SCS runoff analysis was conducted using 7 rainfall events in 1999 for Yongdam-Dam watershed and the Cheon-Cheon subwatershed for the revised TRMM/PR data. TRMM/PR data showed relative errors ranging from 19.6% ti 45.6%, and from 11.3% to 38.9% for Cheon-Cheon subwatershed and Yongdam-Dam watershed, respectively, AWS data showed relative errors ranging from 0.5% to 12.8%, and from -1.6% to -10.3%, for Cheon-Cheon subwatershed and Yongdam-Dam watershed, respectively. Futher researches are necessary to evaluate the relationship between TRMM/PR data and AWS data for practical hydrological applications.
Recently, global climate change causes abnormal weather and disaster countermeasures do not provide sufficient defense and mitigation because they were established according to the historical climate condition. Repeated torrential rains, in particular, are causing damage even in the robust urban flood defense system. Therefore, in this study, the change of runoff considering the spatial distribution of rainfall and urban characteristics was analyzed. For rainfall concentrated in small catchment, rainfall in the watershed must be accurately measured. This study is based on the rainfall data observed with Automated Surface Observing System (ASOS) and Automatic Weather Stations (AWS) provided by the Seoul Meteorological Administration. Effluent from the pumping station was estimated using the EPA-SWMM model and compared and analyzed. Catchments with rainwater pumping station are small with large portion of impermeable areas. Thus, when the ASOS data where is located from from the chatchment, runoff is often calculated using rainfall data that is different from rainfall in the catchment. In this study, the difference between rainfall data observed in the AWS near the catchment and ASOS away from the catchment was calculated. It was found that accurate rainfall should be used to operate rainwater pumping stations or forecast urban flooding floods. In addition, the results of this study may be helpful for estimating design rainfall and runoff calculation.
Proceedings of the Korean Society of Agricultural Engineers Conference
/
2001.10a
/
pp.335-339
/
2001
The Tropical Rainfall Measuring Mission(TRMM) Satellite was launched in November 1997, carrying into orbit the first space-borne Precipitation Radar(PR). The purpose of this study is to identify the relationship between TRMM/PR and AWS raingage data, and test the possibility to apply storm runoff prediction. Four TRMM/PR data in 1999 for Yongdam watershed was adopted and made a simple linear regression equation using AWS data. By using the equation, the storm runoff was estimated with the adjusted rainfall. TRMM/PR rainfall and runoff was overall underestimated by the carry-over effect of rainfall error and SCS-CN value selection.
Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Yong-Hyuk;Lee, Yong-Hee
The Transactions of The Korean Institute of Electrical Engineers
/
v.63
no.4
/
pp.526-533
/
2014
In this study, we introduce design methodology to develop a guidance for issuing heavy rainfall warning by using both RBFNNs(Radial basis function neural networks) and SVR(Support vector regression) model, and then carry out the comparative studies between two pattern classifiers. Individual classifiers are designed as architecture realized with the aid of optimization and pre-processing algorithm. Because the predictive performance of the existing heavy rainfall forecast system is commonly affected from diverse processing techniques of meteorological data, under-sampling method as the pre-processing method of input data is used, and also data discretization and feature extraction method for SVR and FCM clustering and PSO method for RBFNNs are exploited respectively. The observed data, AWS(Automatic weather wtation), supplied from KMA(korea meteorological administration), is used for training and testing of the proposed classifiers. The proposed classifiers offer the related information to issue a heavy rain warning in advance before 1 to 3 hours by using the selected meteorological data and the cumulated precipitation amount accumulated for 1 to 12 hours from AWS data. For performance evaluation of each classifier, ETS(Equitable Threat Score) method is used as standard verification method for predictive ability. Through the comparative studies of two classifiers, neuro-fuzzy method is effectively used for improved performance and to show stable predictive result of guidance to issue heavy rainfall warning.
Yoon, Sun-Kwon;Park, Kyung-Won;Kim, Jong Pil;Jung, Il-Won
Journal of Korea Water Resources Association
/
v.47
no.4
/
pp.371-384
/
2014
This study developed a new algorithm of extreme rainfall extraction based on the Communication, Ocean and Meteorological Satellite (COMS) and the Tropical Rainfall Measurement Mission (TRMM) Satellite image data and evaluated its applicability for the heavy rainfall event in July-2011 in Seoul, South Korea. The power-series-regression-based Z-R relationship was employed for taking into account for empirical relationships between TRMM/PR, TRMM/VIRS, COMS, and Automatic Weather System(AWS) at each elevation. The estimated Z-R relationship ($Z=303R^{0.72}$) agreed well with observation from AWS (correlation coefficient=0.57). The estimated 10-minute rainfall intensities from the COMS satellite using the Z-R relationship generated underestimated rainfall intensities. For a small rainfall event the Z-R relationship tended to overestimated rainfall intensities. However, the overall patterns of estimated rainfall were very comparable with the observed data. The correlation coefficients and the Root Mean Square Error (RMSE) of 10-minute rainfall series from COMS and AWS gave 0.517, and 3.146, respectively. In addition, the averaged error value of the spatial correlation matrix ranged from -0.530 to -0.228, indicating negative correlation. To reduce the error by extreme rainfall estimation using satellite datasets it is required to take into more extreme factors and improve the algorithm through further study. This study showed the potential utility of multi-geostationary satellite data for building up sub-daily rainfall and establishing the real-time flood alert system in ungauged watersheds.
It has been a big problem to estimate rainfall for the studies of mud-debris flows because the estimated rainfall from the nearest AWS (Automatic Weather Station) can tend to be quite inaccurate at individual sites. This study attempts to improve this problem through accurate rainfall depth estimation by applying an artificial neural network with radar rainfall data. For this, three models were made according to utilizing methodologies of rainfall data. The first model uses the nearest rainfall, observing the site from an ungauged site. The second uses only radar rainfall data and the third model integrates the above two models using both radar and observed rainfall at the sites around the ungauged site. This methodology was applied to the metropolitan area in Korea. It appeared as though the third model improved rainfall estimations by the largest margin. Therefore, the proposed methodology can be applied to forecast mud-debris flows in ungageed sites.
In this study, rainfall adjust and forecasting using artificial neural network(ANN) which includes a correlation coefficient is application in Seoul region. It analyzed one-hour rainfall data which has been reported in 25 region in seoul during from 2000 to 2006 at rainfall observatory by AWS. The ANN learning algorithm apply for input data that each region using cross-correlation will use the highest correlation coefficient region. In addition, rainfall adjust analyzed the minimum error based on correlation coefficient and determination coefficient related to the input region. ANN model used back-propagation algorithm for learning algorithm. In case of the back-propagation algorithm, many attempts and efforts are required to find the optimum neural network structure as applied model. This is calculated similar to the observed rainfall that the correlation coefficient was 0.98 in missing rainfall adjust at 10 region. As a result, ANN model has been for suitable for rainfall adjust. It is considered that the result will be more accurate when it includes climate data affecting rainfall.
Journal of the Korean Society of Hazard Mitigation
/
v.7
no.4
/
pp.19-29
/
2007
This study compares various ground-truth designs of radar rainfall using rain-gauge data sets from Korea Meteorological Administration (KMA), AWS and Ministry of Construction and Transportation (MOCT). These Rain-gauge data sets and the Mt. Gwanak radar rainfall data for the same period were compared, and then the differences between two observed rainfall were evaluated with respect to the amount of bias. Additionally this study investigated possible differences in bias due to different storm characteristics. The application results showed no distinct differences between biases from three rain-gauge data sets, but some differences in their statistical characteristics. In overall, the design bias from MOCT was estimated to be the smallest among the three rain-gauge data sets. Among three storm events considered, the jangma with the highest spatial intermittency showed the smallest bias.
KSCE Journal of Civil and Environmental Engineering Research
/
v.39
no.6
/
pp.713-723
/
2019
Due to the climate change and various rainfall pattern, it is difficult to estimate a rainfall criterion which cause inundation for urban drainage districts. It is necessary to examine the result of inundation analysis by considering the detailed topography of the watershed, drainage system, and various rainfall scenarios. In this study, various rainfall scenarios were considered with the probabilistic rainfall and Huff's time distribution method in order to identify the rainfall characteristics affecting the inundation of the Hyoja drainage basin. Flood analysis was performed with SWMM and two-dimensional inundation analysis model and the parameters of SWMM were optimized with flood trace map and GA (Genetic Algorithm). By linking SWMM and two-dimensional flood analysis model, the fitness ratio between the existing flood trace and simulated inundation map turned out to be 73.6 %. The occurrence of inundation according to each rainfall scenario was identified, and the rainfall criterion could be estimated through the logistic regression method. By reflecting the results of one/two dimensional flood analysis, and AWS/ASOS data during 2010~2018, the rainfall criteria for inundation occurrence were estimated as 72.04 mm, 146.83 mm, 203.06 mm in 1, 2 and 3 hr of rainfall duration repectively. The rainfall criterion could be re-estimated through input of continuously observed rainfall data. The methodology presented in this study is expected to provide a quantitative rainfall criterion for urban drainage area, and the basic data for flood warning and evacuation plan.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.