• 제목/요약/키워드: AWS 실황강우

검색결과 5건 처리시간 0.024초

실시간 하천유량 예측을 위한 기상청 AWS 자료의 활용성 평가 (Availability of AWS data from KMA for real-time river flow forecast)

  • 이병주;장기호;최영진
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.131-131
    • /
    • 2011
  • 기후변화로 인한 기상이변 현상이 빈번하게 발생하면서 홍수와 같은 자연재해의 피해규모가 증가하고 있다. 이를 극복하기 위해 최근에는 구조적 대책뿐만 아니라 홍수예측시스템과 같은 비구조적 대책에도 많은 관심과 연구가 이루어지고 있다. 통상 홍수예측을 위해서는 예측강우의 정확도가 중요하게 부각되지만 중규모 이상의 유역에서는 수 시간의 지체시간 효과로 인해 AWS 실황강우만으로도 어느정도 선행시간에 대해서 하천유량예측이 가능하다고 할 수 있다. 본 연구에서는 기상청 AWS 실황강우를 이용하여 하천유량을 예측할 경우 어느정도 선행시간과 정확도를 확보할 수 있는지에 대해서 분석하고자 한다. 분석을 위한 시단위 강우자료와 기상자료는 각각 AWS와 ASOS 자료를 이용하였다. 또한 하천유량 모의를 위한 강우-유출모형으로는 SURF 모델(Sejong University River Forecast Model)을 이용하였다. 이 모형은 저류함수모형 기반의 연속형 강우-유출모형으로 미래에 대한 유출모의결과의 정확도를 향상시키기 위해 앙상블 칼만필터링 기법을 연계한 모형이다. 그림 1은 충주댐유역에 대해서 2009.7.8~17일(240시간)에 대해서 관측유량 자료동화 전후의 결과를 나타낸 것이다. 현시점을 100, 105, 110, 115시간으로 가정하고 미래기간에 대해서는 관측강우를 0으로 가정했을 때 대략 첨두유량 발생 5시간 전에 예측된 모의유량이 관측유량과 거의 일치함을 확인할 수 있다. 따라서 실황강우와 관측유량 자료동화 기법을 연계할 경우 수 시간의 선행시간에 대해서 유량예측이 가능한 것으로 판단된다.

  • PDF

서울시 도시침수 예측시스템의 개선 및 운영 (Improvement and Operation of Urban Inundation Forecasting System in Seoul)

  • 심재범;김호성;강태훈;이병주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.481-481
    • /
    • 2021
  • 서울시는 '10년, '11년, '18년의 기록적인 호우로 인해 막대한 재산피해를 기록하였다. 이로 인해 서울시는 수재해 최소화 대책의 필요성을 인지하여 방재시설물 확충 등의 구조적 대책과 함께 침수지역 예측, 호우 영향 예보와 관련된 비구조적 대책 수립을 위해 노력하고 있다. 그 일환으로 2018~2019년 『서울시 강한 비구름 유입경로 및 침수위험도 예측 용역』 수행을 통해 레이더 실황강우 기반의 강한 비구름 이동경로 추정 기술, 강우시나리오 기반의 침수위험지역추정 기술이 적용된 서울시 도시침수 예측시스템을 개발하였다. 또한, 침수피해에 선제적으로 대응하기 위해 2019~2020년 『서울시 내수침수 위험지역 실시간 예측기술 개발』을 통하여 이류모델 기반의 예측강우정보 추정 기술, 예측강우정보 기반의 실시간 침수위험지역 추정기술을 적용하였다. 현재 서울시 도시침수 예측시스템은 서울시 전역의 강우 및 침수정보를 제공하며, 관로 113,286개(전체 385,768개), 맨홀 106,097개(전체 272,133개), 빗물펌프장 117개소(전체 121개소)가 반영되어 있다. 서울시 도시침수 예측시스템에서는 서울시 25개 자치구를 대상으로 실황 및 예측 강우정보, 강한 비구름에 대한 이동경로정보, 시나리오 및 실시간 침수정보를 제공하고 있다. 강우정보는 10분 및 1시간 단위 AWS 실황정보와 10분 단위 이류모델 기반 예측정보, 1시간 단위 LDAPS 기반 예측정보를 제공한다. 또한, 레이더 실황정보를 통해 판별된 강한 비구름에 대해 10분 단위 1시간 예측경로를 제공한다. 침수정보는 총강우량, 강우지속기간, 빗물받이효율 조건을 반영한 강우시나리오 기반의 6m 고해상도 격자단위 침수시나리오 정보와 자치구별 침수위험정보를 제공한다. 또한, 이류모델 기반의 레이더 예측정보를 이용하여 실시간 침수 예측정보를 제공한다. 향후 서울시 내 모든 수방시설물의 적용, 관로 유출구별 기점수위 반영, 관측자료를 이용한 도시유출 및 도시침수 모델 최적화 등 지속적으로 고도화를 수행하고자 하며, 서울시 도시침수 예측시스템을 통해 서울시 및 자치구 풍수해 담당자가 침수피해를 대비, 대응할 수 있을 것으로 기대된다.

  • PDF

고밀도 지상강우관측망을 활용한 서울지역 정량적 실황강우장 산정 (Quantitative Precipitation Estimation using High Density Rain Gauge Network in Seoul Area)

  • 윤성심;이병주;최영진
    • 대기
    • /
    • 제25권2호
    • /
    • pp.283-294
    • /
    • 2015
  • For urban flash flood simulation, we need the higher resolution radar rainfall than radar rainfall of KMA, which has 10 min time and 1km spatial resolution, because the area of subbasins is almost below $1km^2$. Moreover, we have to secure the high quantitative accuracy for considering the urban hydrological model that is sensitive to rainfall input. In this study, we developed the quantitative precipitation estimation (QPE), which has 250 m spatial resolution and high accuracy using KMA AWS and SK Planet stations with Mt. Gwangdeok radar data in Seoul area. As the results, the rainfall field using KMA AWS (QPE1) is showed high smoothing effect and the rainfall field using Mt. Gwangdeok radar is lower estimated than other rainfall fields. The rainfall field using KMA AWS and SK Planet (QPE2) and conditional merged rainfall field (QPE4) has high quantitative accuracy. In addition, they have small smoothed area and well displayed the spatial variation of rainfall distribution. In particular, the quantitative accuracy of QPE4 is slightly less than QPE2, but it has been simulated well the non-homogeneity of the spatial distribution of rainfall.

서울시 도시침수 예측시스템 개발 (Development of Urban Inundation Forecasting System in Seoul)

  • 심재범;김호성;김광훈;이병주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.341-341
    • /
    • 2020
  • 서울시는 '10년, '11년, '18년의 기록적인 호우로 인해 막대한 재산피해를 기록하였다. 이로 인해 서울시는 수재해 최소화 대책의 필요성을 인지하여 방재시설물 확충 등의 구조적 대책과 함께 침수지역 예측, 호우 영향 예보와 관련된 비구조적 대책 수립을 위해 노력하고 있다. 그 일환으로 '18년에 『서울시 강한 비구름 유입경로 및 침수위험도 예측 용역』을 수행하였으며 이를 통해 레이더 기반의 비구름 이동경로 추정 기술, 침수시나리오 기반의 침수위험지역 추정기술 등을 적용한 서울시 도시침수 예측시스템을 개발하였다. 그러나 침수피해에 선제적으로 대응하기 위해서는 실시간으로 예측강우정보를 생산하고 이를 통해 침수위험지역을 추정하는 기술이 필요하다. 이에 본 연구를 통해 예측강우정보 생산 기술 적용, 예측강우정보를 이용한 실시간 침수위험지역 추정 기술 개발을 수행하여 서울시 도시침수 예측시스템을 고도화하였다. 예측강우정보의 경우 현재 기상청에서 광역 단위 호우특보 및 읍면동 단위 동네예보를 통해 제공되고 있지만, 풍수해 업무에 적용하기에는 제한적이며, 실시간 침수위험지역 추정의 경우 침수해석모델의 모의시간, 라이센스 등의 문제로 인해 한계를 보이고 있는 실정이다. 따라서 본 연구에서는 레이더 실황강우정보를 활용한 이류모델 기반의 예측강우정보 생산 기술을 적용하여 풍수해 업무 적용이 용이하도록 하였으며, 예측강우정보를 이용한 최적 침수시나리오 추정 기술 개발을 통해 실시간 침수위험지역 추정이 가능하도록 하였다. 서울시 도시침수 예측시스템은 25개 자치구를 대상으로 강우량, 호우이동경로, 침수 정보를 제공하고 있다. 강우정보는 기상청 및 SK-TechX 기반의 10분 및 1시간 단위 AWS 관측정보, 이류모델 기반 10분 단위 레이더 예측정보, 국지예보모델 기반 1시간 단위 LDAPS 예측정보를 제공하며. 호우이동경로는 레이더 실황강우정보와 LDAPS 바람장을 이용하여 서울시 및 수도권 지역의 10분 단위 1시간 예측경로를 제공한다. 침수정보는 실시간으로 레이더 예측강우정보를 이용하여 최적의 침수시나리오를 추정하여 격자 단위 상세 침수정보와 시군구 단위 침수위험지도를 제공한다. 본 시스템을 통해 실시간 침수위험지역 확인이 가능해짐에 따라 서울시의 효율적인 풍수해 업무 지원이 가능할 것으로 판단된다.

  • PDF

레이더-위성 결합 초단기 강우예측 기법 개발: 부산 호우사례 적용 (2014년 8월 25일) (Development of Radar-Satellite Blended QPF Technique to Rainfall Forecasting : Extreme heavy rainfall case in Busan, South Korea)

  • 장상민;윤선권;박경원;양유빈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.226-226
    • /
    • 2016
  • 최근 이상기상현상과 기후변화로 인하여 국지적인 집중호우의 빈도 및 규모가 증가하고 있으며, 이로 인한 돌발 홍수피해가 증가하고 있다. 이러한 홍수 피해를 줄이기 위해서는 정확도가 우수한 초단시간(1~2시간 이내) 예측 강우량 정보가 필요하다. 본 연구에서는 집중호우에 대한 초단시간예보 및 실황 예측을 위해 시공간적으로 고해상도 자료를 제공할 수 있는 기상레이더 강우자료와 위성영상 자료를 결합하여 초단기 강수 예측기법 개발 연구를 수행하였다. 또한 기상레이더 강우량은 지상강우관측에 비해 정확성이 낮고, 많은 불확실성을 포함하고 있으므로, 위성영상에서 산출되는 강우자료와 결합하여 강우추정의 정확도를 개선하고자 하였다. 레이더 볼륨자료에서 반사도 자료를 추출하여, 1.5km CAPPI(Constant Altitude Plan Position Indicator) 자료를 생성하고, 반사도 CAPPI 자료의 패턴 상관분석을 통하여 강우시스템의 최적 이동벡터를 산출하였다. 또한 이동벡터를 고려하여 시공간적으로 외삽하여 강우이동 예측 모델을 개발하고, 초기자료로 레이더와 천리안 위성(Communication, Ocean and Meteorological Satellite, COMS) 영상자료에서 생성되는 강우자료를 결합한 강수장 자료를 이용하여 강수 예측장을 생성하였다. 레이더-위성 결합 초단기 강우예측 모델의 정확성 검증을 위하여 2014년 8월 25일 부산 및 영남 지역에 발생한 집중호우 사례에 대하여 지상기상자동관측시스템(Automatic Weather System, AWS) 강우 측정 결과를 비교 분석 하였으며, 그 적용 가능성을 검증하였다. 초단기 강우예측 분석 결과 지상강우자료와의 오차가 발생하나, 추후 여러 통계적 후처리 과정을 통하여 그 성능이 개선될 것으로 보이며, 보다 정확한 강우량 예측을 위해서는 지속적인 알고리즘 개선 및 모형의 검 보정이 필요할 것으로 사료된다.

  • PDF