In this study, the necessity for a village unit Automatic Weather System (AWS) was suggested to obtain correct agricultural weather information by comparing the data of AWS of the weather station with the data of AWS installed in agricultural villages 7 km away. The comparison sites are Hyogyo-ri and Hongseong weather station. The seasonal and monthly averaged and cumulative values of data were calculated and compared. The annual time series and correlation was analyzed to determine the tendency of variation in AWS data. The average values of temperature, relative humidity and wind speed were not much different in comparison with each season. The difference in precipitation was ranged from 13.2 to 91.1 mm. The difference in monthly precipitation ranged from 1.2 to 75.4 mm. The correlation coefficient between temperature, humidity and wind speed was ranged from 0.81 to 0.99 and it of temperature was the highest. The correlation coefficient of precipitation was 0.63 and the lowest among the observed elements. Through this study, precipitation at the weather station and village unit area showed the low correlation and the difference for a quantitative comparison, while the elements excluding precipitation showed the high correlation and the similar annual variation pattern.
This paper introduces an evolutionary nonlinear regression based compensation technique for the short-range prediction of wind speed using AWS(Automatic Weather Station) data. Development of an efficient MOS(Model Output Statistics) is necessary to correct systematic errors of the model, but a linear regression based MOS is hard to manage an irregular nature of weather prediction. In order to solve the problem, a nonlinear and symbolic regression method using GP(Genetic Programming) is suggested for a development of MOS wind forecast guidance. Also FCM(Fuzzy C-Means) clustering is adopted to mitigate bias of wind speed data. The purpose of this study is to evaluate the accuracy of the estimation by a GP based nonlinear MOS for 3 days prediction of wind speed in South Korean regions. This method is then compared to the UM model and has shown superior results. Data for 2007-2009, 2011 is used for training, and 2012 is used for testing.
수치예보모델을 이용한 예보의 정확도를 높이기 위해 관측 간격이 조밀하고 많은 양의 관측자료를 사용하는 방법이 있다. 현재 기상청에서는 자동기상관측장비(Automatic Weather Station, AWS)를 설치하여 관측자료를수 집하고 있지만, 고가의 설치 및 유지보수 비용 등의 경제적인 한계가 있다. 소형 자동기상관측장비(Mini-AWS)는 기온, 습도, 기압을 측정하고 기록할 수 있는 초소형 기상관측장비로 설치 및 유지보수 비용이 저렴하고 설치를 위한 장소 선택의 제약이 크지 않아 필요한 지역에 설치하여 관측자료를 수집하기가 용이하다. 그러나 설치 장소에 따라 외부환경에 영향을 받을 수 있기 때문에 관측자료의 보정이 필요하다. 본 논문에서는 Mini-AWS 기압자료를 기상자료로 활용하기 위한 보정기법을 제안한다. Mini-AWS를 통해 수집된 관측자료는 전처리 과정을 거쳐 주변에서 가장 가까운 AWS 기압 값을 참값으로 기계학습 기법을 이용하여 기압 보정을 수행하였다. 실험결과 기상관측 규정에 따른 허용오차 범위 내에 포함되었으며, 지지벡터 회귀를 적용한 보정기법이 가장 좋은 성능을 보였다.
AWS (Automated Weather Station) wind data was used to predict the annual energy production of Gangwon wind farm having a total capacity of 98 MW in Korea. Two common wind energy prediction programs, WAsP and WindSim were used. Predictions were made for three consecutive years of 2007, 2008 and 2009 and the results were compared with the actual annual energy prediction presented in the CDM (Clean Development Mechanism) monitoring report of the wind farm. The results from both prediction programs were close to the actual energy productions and the errors were within 10%.
본 연구에서는 전산유체역학 모델과 지리정보시스템 자료를 이용하여 밀양시 내이동에 위치한 자동지상관측소(AWS 288)의 지상 바람 관측환경을 분석하였다. AWS 288 인근 지역에 건축 중인 아파트 단지에 의한 관측환경 변화를 분석하기 위하여 16방위의 유입류를 고려하였다. AWS 위치에서 수치 모의된 풍속과 풍향 변화를 중점적으로 분석하였고, 3가지 유입류(남남서풍, 남남동풍, 북북서풍)에 대해서는 AWS 288 주위의 흐름 특성을 상세하게 분석하였다. 남남서풍의 경우, AWS 288 지점에서는 남서쪽에 위치한 아파트 단지의 영향으로 아파트 단지 건축 전과 후의 풍속 차이가 가장 크게 나타났다. 아파트 단지 건축 전에 상대적으로 높은 풍향 빈도가 나타난 남남동풍과 북북서풍의 경우에는 아파트 단지 건축 전 대비 건축 후의 AWS 288 지점에서 수치 모의된 풍속과 풍향 차이는 크지 않았다.
In this study, we analyzed the characteristics of flow around the Daeyeon automatic weather station (AWS 942) and established formulas estimating inflow wind speeds at a computational fluid dynamics (CFD) model domain for the area around Pukyong national university using a computational fluid dynamics (CFD) model. Simulated wind directions at the AWS 942 were quite similar to those of inflows, but, simulated wind speeds at the AWS 942 decreased compared to inflow wind speeds except for the northerly case. The decrease in simulated wind speed at the AWS 942 resulted from the buildings around the AWS 942. In most cases, the AWS 942 was included within the wake region behind the buildings. Wind speeds at the inflow boundaries of the CFD model domain were estimated by comparing simulated wind speeds at the AWS 942 and inflow boundaries and systematically increasing inflow wind speeds from $1m\;s^{-1}$ to $17m\;s^{-1}$ with an increment of $2m\;s^{-1}$ at the reference height for 16 inflow directions. For each inflow direction, calculated wind speeds at the AWS 942 were fitted as the third order functions of the inflow wind speed by using the Marquardt-Levenberg least square method. Estimated inflow wind speeds by the established formulas were compared to wind speeds observed at 12 coastal AWSs near the AWS 942. The results showed that the estimated wind speeds fell within the inter quartile range of wind speeds observed at 12 coastal AWSs during the nighttime and were in close proximity to the upper whiskers during the daytime (12~15 h).
Weather is the most influential factor for crop cultivation. Weather information for cultivated areas is necessary for growth and production forecasting of agricultural crops. However, there are limitations in the meteorological observations in cultivated areas because weather equipment is not installed. This study tested methods of predicting the daily mean temperature in onion fields using geostatistical models. Three models were considered: inverse distance weight method, generalized additive model, and Bayesian spatial linear model. Data were collected from the AWS (automatic weather system), ASOS (automated synoptic observing system), and an agricultural weather station between 2013 and 2016. To evaluate the prediction performance, data from AWS and ASOS were used as the modeling data, and data from the agricultural weather station were used as the validation data. It was found that the Bayesian spatial linear regression performed better than other models. Consequently, high-resolution maps of the daily mean temperature of Jeonnam were generated using all observed weather information.
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.358-360
/
2002
In order to find horizontal and vertical precipitation structure in Korean peninsula, we use ground-based radar, and Automatic Weather Station (AWS) data. Radar data was selected for rain events in the Pusan and Jindo in Korea, during the spring and summer season of 2002. AWS point gauge measurements are analyzed as part of spatial structure of precipitation. TRMM/PR and ground-based radar is used vertical correlation. The results showed, as expected that the correlation decreased rapidly with distance.
PURPOSES : This study demonstrates the need for the collection of road weather information in order to perform efficient snow removal works during the winter season. Snow removal operations are usually dependent upon weather information obtained from the Automatic Weather Station provided by the Korea Meteorological Administration. However, there are some difference between road weather and weather forecasts in their scope. This is because general weather forecasts are focused on macroscopic standpoints rather than microscopic perspectives. METHODS : In this study, the relationship between snow removal works and historical weather forecasts are properly analyzed to prove the importance of road weather information. We collected both weather data and snow removal works during winter season at "A" regional offices in Gangwon areas. RESULTS : Results showed that the validation of weather forecasts for snow removal works were depended on the height difference between AWS location and its neighboring roadway. CONCLUSIONS : Namely, it appears that road weather information should be collected where AWS location and its neighboring roadway have relatively big difference in their heights.
본 연구에서는 도시표면온도를 추출하기 위하여 다시기 Landsat TM band 6 영상을 이용하여 과학기술부의 4가지 모델 즉 two-point linear model, linear regression model, quadratic regression model, cubic regression model에 대하여 각각 공간분석을 실시하였으며 그 결과를 AWS(automatic weather station) 관측자료와 상관 및 회귀분석 함과 동시에 GIS 공간분석 기법을 이용하여 도시 표면온도의 공간적 분포특성을 규명하였다. Landsat TM band 6으로부터 추출된 표면온도를 기초로 하여 토지피복별 표면온도 분포를 분석한 결과 도시 및 나지 지역이 가장 높은 온도분포대를 형성하고 있었으며, 표면온도와 NDVI간의 상관분석결과 평균 -0.85 정도의 음의 상관성을 확인할 수 있었다. 이와 같은 결과는 향후 기상환경 특성을 고려한 도시계획수립에 있어 중요한 인자로 작용할 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.