• Title/Summary/Keyword: AWG phase error

Search Result 5, Processing Time 0.022 seconds

Alternative Method of AWG Phase Measurement Based on Fitting Interference Intensity

  • Oh, Yong Ho;Lim, Sungwoo;Go, Chun Soo
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.91-94
    • /
    • 2012
  • Arrayed waveguide grating (AWG) phase errors are normally assessed from the Fourier transform of the interference intensity data in the frequency domain method. However it is possible to identify the phases directly from the intensity data if one adopts a trial-and-error method. Since the functional form of the intensity profile is known, the intensities can be calculated theoretically by assuming arbitrary phase errors. Then we decide the phases that give the best fit to the experimental data. We verified this method by a simulation. We calculated the intensities for an artificial AWG which is given arbitrary phases and amplitudes. Then we extracted the phases and amplitudes from the intensity data by using our trial-and-error method. The extracted values are in good agreement with the originally given values. This approach yields better results than the analysis using Fourier transforms.

Measurement of the Phase Errors of AWG by Using the Monte-Carlo Analysis (몬테카를로 분석 방법을 이용한 AWG의 위상 오차 측정)

  • Go, Chun-Soo;Oh, Yong-Ho;Lim, Sung-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.5
    • /
    • pp.207-213
    • /
    • 2011
  • We propose a new method to measure the phase errors of an AWG(arrayed waveguide grating) through Monte-Carlo analysis. In the frequency domain method, we used the Monte-Carlo method to fit the theory to the experimental results. The phase and amplitude values are obtained from the fitted theory. To verify our method, we carried out a simulation. Some phase errors were included to make a virtual interferogram and we measured the actual AWG phase errors from it by our method. The results show that our method gives good results if the laser tuning range is larger than 1.7 times of the AWG FSR(free spectral range) and if the phase errors are within ${\pm}50^{\circ}$.

Low Coherence Interferometer for Measurement of Path Length Errors in Arrayed-Waveguide Grating (Arrayed-Waveguide Grating의 경로 오차 측정을 위한 저 간섭 광원 간섭계)

  • Song, Young-Ki;Heo, Nam-Chun;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.539-546
    • /
    • 2004
  • An improved low coherence interferometer system and a new analysis method for the accurate measurement of the optical path difference error of an AWG (Arrayed-Waveguide Grating) are described. The use of software simplifies the experimental setup by eliminating the hardware (clock generator). In addition, the actual distances between the peak positions of the adjacent interference signals are calculated using interpolation methods. The wavelength transmission characteristics of the AWG are calculated assuming the measured phase errors. The calculated AWG characteristic is quite similar to the actual measurement result, confirming accuracy of the proposed measurement setup.

AWG device characteristic dependence on the fabrication error limit (도파폭 공정오차에 따른 광도파 특성변화와 소자성능 저하)

  • 박순룡;오범환
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.4
    • /
    • pp.342-347
    • /
    • 1999
  • As the waveguide width and the radius of curvature get smaller for the effort of monolithic fabrication of integrated photonic devices, the waveguide characteristics change significantly according to the change of the waveguide width or the radius of curvature. Especially, variation of the waveguide width due to fabrication process errors induces a phase error for each waveguide from the change of the propagation constant. Therefore, it is important to quantify these variation effects on the device characteristics for the design and fabrication of highly integrated photonic devices. Here, we analyze four different types of waveguides to get general characteristics in propagation constant change by utilizing the effective index method and the analytic solution method. Futhermore, the output characteristics of two AWG(Arrayed Waveguide Grating) devices are simulated by a highly-functional computer code. The simulated results have been found to be similar to the realistic device characteristics. The required fabrication error limit for the ridge-type InP-AWG device should be smaller than 0.02 ${\mu}{\textrm}{m}$ to get better channel crosstalk than-25 dB, while the required fabrication error limit for rib-type silica-AWG devices may be allowed up to 0.1 ${\mu}{\textrm}{m}$ to obtain better crosstalk than -30 dB.

  • PDF

A Study on Measurement Method of Optical Path Error in Arrayed Waveguide Grating Router (광도파로열 격자 라우터의 경로오차 측정 방법에 관한 연구)

  • Park, Jae-Sung;Chung, Young-Chul;Mun, Seong-Uk
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2431-2433
    • /
    • 1999
  • Phase errors of arrayed waveguide degrade the performance of AWG router, especially for dense WDM system. So it is necessary to measure the phase error and to compensate. The analysis method of the interference signal from the low coherence interferometer to measure the path length difference phase error is studied. The interference signal generated assuming the intentional path length difference errors of 0.1$\sim$0.4${\mu}m$ are analyzed and the results show that the path length difference phase error of ${\Delta}L$ within ${\pm}14^{\circ}$ of sampling phase error can be accurately measured.

  • PDF