• Title/Summary/Keyword: AUTOSAR-lite

Search Result 2, Processing Time 0.013 seconds

AUTOSAR-ready Light Software Architecture for Automotive Embedded Control Systems (차량용 전자제어시스템을 위한 AUTOSAR 대응 경량화 소프트웨어 아키텍처 연구)

  • Lee, Kangseok;Park, Inseok;SunWoo, Myoungho;Lee, Wootaik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.68-77
    • /
    • 2013
  • This paper presents AUTOSAR-ready light software architecture (AUTOSAR-Lite), which is a light weighted version of the AUTOSAR, for automotive embedded control systems. The proposed AUTOSAR-Lite reduces overhead problems caused by the excessive standard specifications of AUTOSAR. Concurrently, AUTOSAR-Lite keeps advantages of AUTOSAR such as a scalability, re-usability, reliability, and transferability. The fundamental design of AUTOSAR-Lite is originated from the AUTOSAR standard. AUTOSAR-Lite is composed of three layers such as an application software, runtime environment, and basic software layer. The application software layer adopts component-based design methodology as AUTOSAR. The runtime environment layer integrates interfaces between application and basic software layers. In case of the basic software layer, restrictions of the module configurations and interfaces of basic software are minimized. In order to validate the feasibility of AUTOSAR-Lite, a software design result based on AUTOSAR-Lite software architecture for electronic throttle control (ETC) system is suggested.

Application Software Modeling and Integration Methodology using AUTOSAR-ready Light Software Architecture (AUTOSAR 대응 경량화 소프트웨어 아키텍처를 이용한 어플리케이션 소프트웨어 모델링 및 통합 방법)

  • Park, In-Seok;Lee, Woo-Taik;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.117-125
    • /
    • 2012
  • This paper describes a model-based software development methodology for AUTOSAR-ready light software architecture(AUTOSAR-Lite). The proposed methodology briefly represents an application software modeling technique using Matlab/Simulink. Using the proposed technique, application software architecture elements (e.g. software components, runnables, and interfaces) and functional behaviors can be designed in a single modeling environment. From the designed model, the codes of application software is automatically generated using Real-Time Workshop Embedded Coder. The generated application software is easily integrated with hand-coded basic software using the proposed method. In order to evaluate the proposed methodology, a diesel engine management system for a passenger car was employed as a case study. Based on the methodology, 8 atomic software components and 52 runnables are successfully developed, and they are evaluated by engine experiments. From this case study, AUTOSAR compatible model-based application software was successfully developed, and the effectiveness of the proposed methodology was evaluated.