• 제목/요약/키워드: AUROC

검색결과 55건 처리시간 0.022초

Prognostic Accuracy of the Quick Sequential Organ Failure Assessment for Outcomes Among Patients with Trauma in the Emergency Department: A Comparison with the Modified Early Warning Score, Revised Trauma Score, and Injury Severity Score

  • Kang, Min Woo;Ko, Seo Young;Song, Sung Wook;Kim, Woo Jeong;Kang, Young Joon;Kang, Kyeong Won;Park, Hyun Soo;Park, Chang Bae;Kang, Jeong Ho;Bu, Ji Hwan;Lee, Sung Kgun
    • Journal of Trauma and Injury
    • /
    • 제34권1호
    • /
    • pp.3-12
    • /
    • 2021
  • Purpose: To evaluate the severity of trauma, many scoring systems and predictive models have been presented. The quick Sequential Organ Failure Assessment (qSOFA) is a simple scoring system based on vital signs, and we expect it to be easier to apply to trauma patients than other trauma assessment tools. Methods: This study was a cross-sectional study of trauma patients who visited the emergency department of Jeju National University Hospital. We excluded patients under the age of 18 years and unknown outcomes. We calculated the qSOFA, the Modified Early Warning Score (mEWS), Revised Trauma Score (RTS), and Injury Severity Score (ISS) based on patients' initial vital signs and assessments performed in the emergency department (ED). The primary outcome was mortality within 14 days of trauma. We analyzed qSOFA scores using multivariate logistic regression analysis and compared the predictive accuracy of these scoring systems using the area under the receiver operating characteristic curve (AUROC). Results: In total, 27,764 patients were analyzed. In the multivariate logistic regression analysis of the qSOFA, the adjusted odds ratios with 95% confidence interval (CI) for mortality relative to a qSOFA score of 0 were 27.82 (13.63-56.79) for a qSOFA score of 1, 373.31 (183.47-759.57) for a qSOFA score of 2, and 494.07 (143.75-1698.15) for a qSOFA score of 3. In the receiver operating characteristic (ROC) curve analysis for the qSOFA, mEWS, ISS, and RTS in predicting the outcomes, for mortality, the AUROC for the qSOFA (AUROC [95% CI]; 0.912 [0.871-0.952]) was significantly greater than those for the ISS (0.700 [0.608-0.793]) and RTS (0.160 [0.108-0.211]). Conclusions: The qSOFA was useful for predicting the prognosis of trauma patients evaluated in the ED.

Improving the Performance of Radiologists Using Artificial Intelligence-Based Detection Support Software for Mammography: A Multi-Reader Study

  • Jeong Hoon Lee;Ki Hwan Kim;Eun Hye Lee;Jong Seok Ahn;Jung Kyu Ryu;Young Mi Park;Gi Won Shin;Young Joong Kim;Hye Young Choi
    • Korean Journal of Radiology
    • /
    • 제23권5호
    • /
    • pp.505-516
    • /
    • 2022
  • Objective: To evaluate whether artificial intelligence (AI) for detecting breast cancer on mammography can improve the performance and time efficiency of radiologists reading mammograms. Materials and Methods: A commercial deep learning-based software for mammography was validated using external data collected from 200 patients, 100 each with and without breast cancer (40 with benign lesions and 60 without lesions) from one hospital. Ten readers, including five breast specialist radiologists (BSRs) and five general radiologists (GRs), assessed all mammography images using a seven-point scale to rate the likelihood of malignancy in two sessions, with and without the aid of the AI-based software, and the reading time was automatically recorded using a web-based reporting system. Two reading sessions were conducted with a two-month washout period in between. Differences in the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, and reading time between reading with and without AI were analyzed, accounting for data clustering by readers when indicated. Results: The AUROC of the AI alone, BSR (average across five readers), and GR (average across five readers) groups was 0.915 (95% confidence interval, 0.876-0.954), 0.813 (0.756-0.870), and 0.684 (0.616-0.752), respectively. With AI assistance, the AUROC significantly increased to 0.884 (0.840-0.928) and 0.833 (0.779-0.887) in the BSR and GR groups, respectively (p = 0.007 and p < 0.001, respectively). Sensitivity was improved by AI assistance in both groups (74.6% vs. 88.6% in BSR, p < 0.001; 52.1% vs. 79.4% in GR, p < 0.001), but the specificity did not differ significantly (66.6% vs. 66.4% in BSR, p = 0.238; 70.8% vs. 70.0% in GR, p = 0.689). The average reading time pooled across readers was significantly decreased by AI assistance for BSRs (82.73 vs. 73.04 seconds, p < 0.001) but increased in GRs (35.44 vs. 42.52 seconds, p < 0.001). Conclusion: AI-based software improved the performance of radiologists regardless of their experience and affected the reading time.

Deep Learning-Assisted Diagnosis of Pediatric Skull Fractures on Plain Radiographs

  • Jae Won Choi;Yeon Jin Cho;Ji Young Ha;Yun Young Lee;Seok Young Koh;June Young Seo;Young Hun Choi;Jung-Eun Cheon;Ji Hoon Phi;Injoon Kim;Jaekwang Yang;Woo Sun Kim
    • Korean Journal of Radiology
    • /
    • 제23권3호
    • /
    • pp.343-354
    • /
    • 2022
  • Objective: To develop and evaluate a deep learning-based artificial intelligence (AI) model for detecting skull fractures on plain radiographs in children. Materials and Methods: This retrospective multi-center study consisted of a development dataset acquired from two hospitals (n = 149 and 264) and an external test set (n = 95) from a third hospital. Datasets included children with head trauma who underwent both skull radiography and cranial computed tomography (CT). The development dataset was split into training, tuning, and internal test sets in a ratio of 7:1:2. The reference standard for skull fracture was cranial CT. Two radiology residents, a pediatric radiologist, and two emergency physicians participated in a two-session observer study on an external test set with and without AI assistance. We obtained the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity along with their 95% confidence intervals (CIs). Results: The AI model showed an AUROC of 0.922 (95% CI, 0.842-0.969) in the internal test set and 0.870 (95% CI, 0.785-0.930) in the external test set. The model had a sensitivity of 81.1% (95% CI, 64.8%-92.0%) and specificity of 91.3% (95% CI, 79.2%-97.6%) for the internal test set and 78.9% (95% CI, 54.4%-93.9%) and 88.2% (95% CI, 78.7%-94.4%), respectively, for the external test set. With the model's assistance, significant AUROC improvement was observed in radiology residents (pooled results) and emergency physicians (pooled results) with the difference from reading without AI assistance of 0.094 (95% CI, 0.020-0.168; p = 0.012) and 0.069 (95% CI, 0.002-0.136; p = 0.043), respectively, but not in the pediatric radiologist with the difference of 0.008 (95% CI, -0.074-0.090; p = 0.850). Conclusion: A deep learning-based AI model improved the performance of inexperienced radiologists and emergency physicians in diagnosing pediatric skull fractures on plain radiographs.

Development and Validation of MRI-Based Radiomics Models for Diagnosing Juvenile Myoclonic Epilepsy

  • Kyung Min Kim;Heewon Hwang;Beomseok Sohn;Kisung Park;Kyunghwa Han;Sung Soo Ahn;Wonwoo Lee;Min Kyung Chu;Kyoung Heo;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • 제23권12호
    • /
    • pp.1281-1289
    • /
    • 2022
  • Objective: Radiomic modeling using multiple regions of interest in MRI of the brain to diagnose juvenile myoclonic epilepsy (JME) has not yet been investigated. This study aimed to develop and validate radiomics prediction models to distinguish patients with JME from healthy controls (HCs), and to evaluate the feasibility of a radiomics approach using MRI for diagnosing JME. Materials and Methods: A total of 97 JME patients (25.6 ± 8.5 years; female, 45.5%) and 32 HCs (28.9 ± 11.4 years; female, 50.0%) were randomly split (7:3 ratio) into a training (n = 90) and a test set (n = 39) group. Radiomic features were extracted from 22 regions of interest in the brain using the T1-weighted MRI based on clinical evidence. Predictive models were trained using seven modeling methods, including a light gradient boosting machine, support vector classifier, random forest, logistic regression, extreme gradient boosting, gradient boosting machine, and decision tree, with radiomics features in the training set. The performance of the models was validated and compared to the test set. The model with the highest area under the receiver operating curve (AUROC) was chosen, and important features in the model were identified. Results: The seven tested radiomics models, including light gradient boosting machine, support vector classifier, random forest, logistic regression, extreme gradient boosting, gradient boosting machine, and decision tree, showed AUROC values of 0.817, 0.807, 0.783, 0.779, 0.767, 0.762, and 0.672, respectively. The light gradient boosting machine with the highest AUROC, albeit without statistically significant differences from the other models in pairwise comparisons, had accuracy, precision, recall, and F1 scores of 0.795, 0.818, 0.931, and 0.871, respectively. Radiomic features, including the putamen and ventral diencephalon, were ranked as the most important for suggesting JME. Conclusion: Radiomic models using MRI were able to differentiate JME from HCs.

LSTM Autoencoder를 이용한 에스컬레이터 설비 이상 탐지 (Escalator Anomaly Detection Using LSTM Autoencoder)

  • 이종현;손정모
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.7-10
    • /
    • 2021
  • 에스컬레이터의 고장 여부를 사전에 파악하는 것은 경제적 손실뿐만 아니라 인명 피해를 예방할 수 있어서 매우 중요하다. 실제 이러한 고장 예측을 위한 많은 딥러닝 알고리즘이 연구되고 있지만, 설비의 이상 데이터 확보가 어려워 모델 학습이 어렵다는 문제점이 있다. 본 연구에서는 이러한 문제의 해결 방안으로 비지도 학습 기반의 방법론 중 하나인 LSTM Autoencoder 알고리즘을 사용해 에스컬레이터의 이상을 탐지하는 모델을 생성했고, 최종 실험 결과 모델 성능 AUROC가 0.9966, 테스트 Accuracy가 0.97이라는 높은 정확도를 기록했다.

  • PDF

위·변조 영상의 에지 에너지 정보를 이용한 영상 포렌식 판정 알고리즘 (Image Forensic Decision Algorithm using Edge Energy Information of Forgery Image)

  • 이강현
    • 전자공학회논문지
    • /
    • 제51권3호
    • /
    • pp.75-81
    • /
    • 2014
  • 디지털 영상의 배포에서, 저작권 침해자에 의해 영상이 불법으로 위 변조되어 유통되는 심각한 문제가 대두되어 있다. 이러한 문제를 해결하기 위하여, 본 논문에서는 위 변조된 디지털 영상의 에지 에너지 정보를 이용한 영상 포렌식 판정 알고리즘을 제안한다. 제안된 알고리즘은 SA (Streaking Artifacts)와 SPAM (Subtractive Pixel Adjacency Matrix)을 이용하여, 원 영상의 JPEG 압축률 (QF=90, 70, 50, 30)에 따른 에지정보와 질의영상의 에지정보를 추출하고, 이를 각각 비교하여 위 변조 여부를 판정한다. 원 영상과 질의영상의 에지정보 매칭은 JPEG 압축률 조합의 임계치 (TCJCR : Threshold by Combination of JPEG Compression Ratios)에 따라 이루어진다. 실험을 통하여, TP (True Positive)와 FN (False Negative)은 87.2%와 13.8%이며, 산출된 최소평균 판정 에러는 0.1349이다. 그리고 제안된 알고리즘의 성능평가에서 민감도 (Sensitivity)와 1-특이도(1-Specificity)의 AUROC (Area Under Receiver Operating Characteristic) 커브 면적은 0.9388로 'Excellent(A)' 등급임을 확인하였다.

Artificial Neural Network for Prediction of Distant Metastasis in Colorectal Cancer

  • Biglarian, Akbar;Bakhshi, Enayatollah;Gohari, Mahmood Reza;Khodabakhshi, Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권3호
    • /
    • pp.927-930
    • /
    • 2012
  • Background and Objectives: Artificial neural networks (ANNs) are flexible and nonlinear models which can be used by clinical oncologists in medical research as decision making tools. This study aimed to predict distant metastasis (DM) of colorectal cancer (CRC) patients using an ANN model. Methods: The data of this study were gathered from 1219 registered CRC patients at the Research Center for Gastroenterology and Liver Disease of Shahid Beheshti University of Medical Sciences, Tehran, Iran (January 2002 and October 2007). For prediction of DM in CRC patients, neural network (NN) and logistic regression (LR) models were used. Then, the concordance index (C index) and the area under receiver operating characteristic curve (AUROC) were used for comparison of neural network and logistic regression models. Data analysis was performed with R 2.14.1 software. Results: The C indices of ANN and LR models for colon cancer data were calculated to be 0.812 and 0.779, respectively. Based on testing dataset, the AUROC for ANN and LR models were 0.82 and 0.77, respectively. This means that the accuracy of ANN prediction was better than for LR prediction. Conclusion: The ANN model is a suitable method for predicting DM and in that case is suggested as a good classifier that usefulness to treatment goals.

이변량 ROC곡선 (Bivariate ROC Curve)

  • 홍종선;김강천;정진아
    • Communications for Statistical Applications and Methods
    • /
    • 제19권2호
    • /
    • pp.277-286
    • /
    • 2012
  • 신용평가모형에서 부도로 잘못 예측된 정상 차주의 비율과 정확하게 평가된 부도차주의 비율인 일변량 누적분포함수로 표현된 ROC 곡선을 이용하여 분류성과를 평가한다. 본 연구에서는 스코어 확률변수를 이변량으로 확장하여 부도와 정상 차주의 결합누적분포함수를 이용하여 표현할 수 있는 ROC 곡선을 제안한다. 이변량 평균벡터를 통과하는 확률변수의 선형 관계를 이용하여 이변량 ROC 곡선을 구현한다. 그리고 다양한 이변량 정규분포에 대한 ROC 곡선으로부터 분류성과를 탐색하고, 이에 대응하는 AUROC 통계량과 비교분석한다. 본 연구에서 제안한 이변량 ROC 곡선으로부터 분류기준에 적합한 최적분류점을 구하고 이를 통해 이변량 혼합분포함수의 최적 분류기준을 설정할 수 있음을 보인다.

Accuracy of various imaging methods for detecting misfit at the tooth-restoration interface in posterior teeth

  • Francio, Luciano Andrei;Silva, Fernanda Evangelista;Valerio, Claudia Scigliano;Cardoso, Claudia Assuncao e Alves;Jansen, Wellington Correa;Manzi, Flavio Ricardo
    • Imaging Science in Dentistry
    • /
    • 제48권2호
    • /
    • pp.87-96
    • /
    • 2018
  • Purpose: The present study aimed to evaluate which of the following imaging methods best assessed misfit at the tooth-restoration interface: (1) bitewing radiographs, both conventional and digital, performed using a photostimulable phosphor plate (PSP) and a charge-coupled device (CCD) system; (2) panoramic radiographs, both conventional and digital; and (3) cone-beam computed tomography (CBCT). Materials and Methods: Forty healthy human molars with class I cavities were selected and divided into 4 groups according to the restoration that was applied: composite resin, composite resin with liner material to simulate misfit, dental amalgam, and dental amalgam with liner material to simulate misfit. Radiography and tomography were performed using the various imaging methods, and the resulting images were analyzed by 2 calibrated radiologists. The true presence or absence of misfit corresponding to an area of radiolucency in regions subjacent to the esthetic and metal restorations was validated with microscopy. The data were analyzed using a receiver operating characteristic (ROC) curve, and the scores were compared using the Cohen kappa coefficient. Results: For bitewing images, the digital systems (CCD and PSP) showed a higher area under the ROC curve (AUROC) for the evaluation of resin restorations, while the conventional images exhibited a larger AUROC for the evaluation of amalgam restorations. Conventional and digital panoramic radiographs did not yield good results for the evaluation of resin and amalgam restorations (P<.05). CBCT images exhibited good results for resin restorations(P>.05), but showed no discriminatory ability for amalgam restorations(P<.05). Conclusion: Bitewing radiographs (conventional or digital) should be the method of choice when assessing dental restoration misfit.

Prediction of Coronary Heart Disease Risk in Korean Patients with Diabetes Mellitus

  • Koo, Bo Kyung;Oh, Sohee;Kim, Yoon Ji;Moon, Min Kyong
    • 지질동맥경화학회지
    • /
    • 제7권2호
    • /
    • pp.110-121
    • /
    • 2018
  • Objective: We developed a new equation for predicting coronary heart disease (CHD) risk in Korean diabetic patients using a hospital-based cohort and compared it with a UK Prospective Diabetes Study (UKPDS) risk engine. Methods: By considering patients with type 2 diabetes aged ${\geq}30years$ visiting the diabetic center in Boramae hospital in 2006, we developed a multivariable equation for predicting CHD events using the Cox proportional hazard model. Those with CHD were excluded. The predictability of CHD events over 6 years was evaluated using area under the receiver operating characteristic (AUROC) curves, which were compared using the DeLong test. Results: A total of 732 participants (304 males and 428 females; mean age, $60{\pm}10years$; mean duration of diabetes, $10{\pm}7years$) were followed up for 76 months (range, 1-99 month). During the study period, 48 patients (6.6%) experienced CHD events. The AUROC of the proposed equation for predicting 6-year CHD events was 0.721 (95% confidence interval [CI], 0.641-0.800), which is significantly larger than that of the UKPDS risk engine (0.578; 95% CI, 0.482-0.675; p from DeLong test=0.001). Among the subjects with <5% of risk based on the proposed equation, 30.6% (121 out of 396) were classified as ${\geq}10%$ of risk based on the UKPDS risk engine, and their event rate was only 3.3% over 6 years. Conclusion: The UKPDS risk engine overestimated CHD risk in type 2 diabetic patients in this cohort, and the proposed equation has superior predictability for CHD risk compared to the UKPDS risk engine.