• Title/Summary/Keyword: ATR-FTIR spectroscopy

Search Result 69, Processing Time 0.025 seconds

Nanoparticle의 분산 안정도에 따른 ATR-FTIR 분석법을 이용한 증착소재 흡착특성연구

  • Kim, Jong-Ho;Park, Jae-Seo;shahzad, Rauf;Lee, Chang-Hui;Sin, Jae-Su;Gang, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.113-113
    • /
    • 2016
  • 반도체 산업이 발전하고 기술이 향상됨에 따라 미세화되고 복잡한 구조의 소자가 개발되고 있으며, 2차원 소재 등 다양하고 새로운 소재들이 발견 및 연구되고 있다. 새로운 소재 또는 기술을 이용한 고품질 소자를 개발하기 위해서는 우수한 특성(높은 순도, 우수한 분해 및 반응 특성)을 지닌 증착소재의 개발 및 평가가 선행되어야 한다. 기존의 증착소재의 기본 물성을 측정하는 방법인 단순 기상 Fourier transform infrared spectroscopy(FT-IR) 분석법은 실제 공정에서의 증착경향을 대변하기 어렵다는 단점이 있다. 이러한 단점을 보완하기 위해 개조된 attenuated total reflection (ATR) 액세서리를 이용하여 실제 공정에서의 증착경향을 대변하고자 하였다. 본 연구에서는 반도체 증착소재의 분해 및 표면 흡착 특성을 분석하기 위해 ATR-FTIR 분석법을 이용하여 수행하였으며, 분산안정도에 따른 nanoparticle을 ATR의 크리스탈 표면에 분포시켜 hexamethyldisilazane(HMDS) source의 흡착 효율을 향상시키는 연구를 수행하였다. Nanoparticle의 분산안정도를 높이기 위하여 suspension 상태에서 pH, sonication, 분산제를 이용하였으며, nanoparticle을 ATR crystal 표면에 분포하여 분석한 결과, 분산안정도에 따라 HMDS의 흡착효율이 달라짐을 확인하였다.

  • PDF

Spectroscopic Studies on Electroless Deposition of Copper on Hydrogen-Terminated Si(111) Surface in NH4F Solution Containing Cu(II) Ions

  • Lee, In-Churl;Bae, Sang-Eun;Song, Moon-Bong;Lee, Jong-Soon;Paek, Se-Hwan;J.Lee, Chi-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.167-171
    • /
    • 2004
  • The electroless deposition of copper on the hydrogen-terminated Si(111) surface was investigated by means of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, scanning tunneling microscopy (STM), and energy-dispersive spectroscopy (EDS). The hydrogen-terminated Si(111) surface prepared was stable under air atmosphere for a day or more. It was found from ATR-FTIR that two bands centered at 2000 and 2260 $cm^{-1}$ appeared after the H-Si(111) surface was immersed in 40% $NH_4F$ solution containing 10 mM $Cu^{2+}$. On the other hand, STM image included the copper islands with a height of 5 nm and a diameter of 10-20 nm. The EDS data displayed the presence of copper, silicon and oxygen species. The results were rationalized in terms of the redox reaction of surface Si atoms and $Cu^{2+}$ ions in solutions, which are changed into $Si(OH)_x(F)_y$ containing $SiF_6^{2-}$ ions and neutral copper islands.

Effect of Processing Conditions on the Homogeneity of Partially Degummed Silk Evaluated by FTIR Spectroscopy

  • Kim, Hyun Ju;Chung, Da Eun;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.26 no.1
    • /
    • pp.54-60
    • /
    • 2013
  • The partial degumming of silk has recently attracted researchers' attention because of its ability to produce silk textiles with new tactile properties, intermediate between the softness of fully degummed silk and the hardness of raw silk. However, it is difficult to obtain partially degummed silk in a homogenously degummed state due to the heterogeneous character of sericin removal. It is also difficult to examine the homogeneity of degumming. In the present study, Fourier transform infrared (FTIR) spectroscopy with attenuated total reflection (ATR) geometry was used to evaluate the effect of processing conditions on the degumming of silk yarns. The crystallinity index, calculated from FTIR spectra, showed an increase with the degumming ratio. Therefore, the homogeneity of degumming could be evaluated by the variation of crystallinity index for 30 different spots in silk yarns. The homogeneity of degumming was influenced by the total degumming time, the content of surfactant, and the liquor rate. No effect was observed upon changing the number of degumming cycles at the same total degumming time.

A Study on Characteristics of Surface Modified Polyimide Film by Wet Process (습식 표면개질 처리된 폴리이미드 필름 표면의 특성에 관한 연구)

  • Koo, S.B.;Lee, H.K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.4
    • /
    • pp.166-172
    • /
    • 2006
  • Metallized Polyimide films are extensively used as base materials in microelectronics, optical and automotive applications. However it is difficult to deposit metals on those because of their structural stabilities. In this work, polyimide films are modified by a wet process with alkalinemetalhydroxide and additives to introduce functional groups. The surface molecular structures of polyimide are investigated using X-ray photoelectron spectroscopy(XPS), fourier transform infrared reflection spectroscopy(FTIR-ATR), atomic force micro-scopic(AFM). XPS spectra and FTIR spectra show that the surface structure of polyimide is converted into potassium polyamate. AFM image and AFM cross-sectional analyses reveal the increased roughness on the modified surface of polyimide films. As a result, it is shown that the adhesion strength between polyimide surface and electroless nickel layer is increased by the nano-anchoring effect.

A comparison of ATR-FTIR and Raman spectroscopy for the non-destructive examination of terpenoids in medicinal plants essential oils

  • Rahul Joshi;Sushma Kholiya;Himanshu Pandey;Ritu Joshi;Omia Emmanuel;Ameeta Tewari;Taehyun Kim;Byoung-Kwan Cho
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.675-696
    • /
    • 2023
  • Terpenoids, also referred to as terpenes, are a large family of naturally occurring chemical compounds present in the essential oils extracted from medicinal plants. In this study, a nondestructive methodology was created by combining ATR-FT-IR (attenuated total reflectance-Fourier transform infrared), and Raman spectroscopy for the terpenoids assessment in medicinal plants essential oils from ten different geographical locations. Partial least squares regression (PLSR) and support vector regression (SVR) were used as machine learning methodologies. However, a deep learning based model called as one-dimensional convolutional neural network (1D CNN) were also developed for models comparison. With a correlation coefficient (R2) of 0.999 and a lowest RMSEP (root mean squared error of prediction) of 0.006% for the prediction datasets, the SVR model created for FT-IR spectral data outperformed both the PLSR and 1 D CNN models. On the other hand, for the classification of essential oils derived from plants collected from various geographical regions, the created SVM (support vector machine) classification model for Raman spectroscopic data obtained an overall classification accuracy of 0.997% which was superior than the FT-IR (0.986%) data. Based on the results we propose that FT-IR spectroscopy, when coupled with the SVR model, has a significant potential for the non-destructive identification of terpenoids in essential oils compared with destructive chemical analysis methods.

Evaluation of benzene residue in edible oils using Fourier transform infrared (FTIR) spectroscopy

  • Joshi, Ritu;Cho, Byoung-Kwan;Lohumi, Santosh;Joshi, Rahul;Lee, Jayoung;Lee, Hoonsoo;Mo, Changyeun
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.2
    • /
    • pp.257-271
    • /
    • 2019
  • The use of food grade hexane (FGH) for edible oil extraction is responsible for the presence of benzene in the crude oil. Benzene is a Group 1 carcinogen and could pose a serious threat to the health of consumer. However, its detection still depends on classical methods using chromatography which requires a rapid non-destructive detection method. Hence, the aim of this study was to investigate the feasibility of using Fourier transform infrared (FTIR) spectroscopy combined with multivariate analysis to detect and quantify the benzene residue in edible oil (sesame and cottonseed oil). Oil samples were adulterated with varying quantities of benzene, and their FTIR spectra were acquired with an attenuated total reflectance (ATR) method. Optimal variables for a partial least-squares regression (PLSR) model were selected using the variable importance in projection (VIP) and the selectivity ratio (SR) methods. The developed PLS models with whole variables and the VIP- and SR-selected variables were validated against an independent data set which resulted in $R^2$ values of 0.95, 0.96, and 0.95 and standard error of prediction (SEP) values of 38.5, 33.7, and 41.7 mg/L, respectively. The proposed technique of FTIR combined with multivariate analysis and variable selection methods can detect benzene residuals in edible oils with the advantages of being fast and simple and thus, can replace the conventional methods used for the same purpose.

Preparation of Natural Polymer-CaP Composite Films (천연 고분자-칼슘 포스페이트 복합 박막 제조)

  • Kim, Ka-Eun;Mo, Man-Jin;Lee, Woo-Kul
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.112-116
    • /
    • 2005
  • We investigated the surface modification method for the preparation of organic-inorganic hybrid composite thin film. Gelatin obtained from the decomposition of collagen was allowed to adsorb in a polystyrene tissue culture dish for 2 h to from layers of gelatin. Supersaturated ionic solution of calcium and phosphorus was injected on the gelatin adsorbed layer to form calcium phosphate thin film. During the initial period of incubation, nucleates were formed. With increase of the incubation time, CaP (calcium phosphate) thin film grew on the surface of the culture dish. The gelatin/CaP thin film displayed the highly porous three-dimensional surface structure. Attenuated, total reflectance Fourier transform, infra-red spectroscopy (ATR-FTIR) was used to analyze the chemical properties of CaP film. The analysis demonstrated that the CaP film formed at initial period of treatment appeared to be amorphous. With increase of incubation time, the crystallinity of the film was slightly increased, but the presence of the peaks for the low crystalline CaP confirmed that the CaP thin film prepared in this study was poorly crystallized.

Influence of Filler and Cure Systems on Whitening of EPDM Composites by Formation of Metal Salt (충전 시스템과 가교 시스템이 금속염 형성에 의한 EPDM 복합체의 백화에 미치는 영향)

  • Chung, Hye-Seung;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.210-215
    • /
    • 2012
  • Whitening phenomena of the EPDM composites with different inorganic filler compositions which were aged at $90^{\circ}C$ for 7 days in air and tap water atmospheres, respectively, were investigated. The aged samples in tap water containing stearic acid exhibited severe whitening phenomena, while all the samples aged in air did not show any whitening. Depending on the filler compositions, there was no big difference in the whitening phenomena. The whitening materials were analyzed using gas chromatography/mass spectrometry (GC/MS), image analysis, energy-dispersive X-ray spectroscopy (EDX), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The whitening materials were identified to be salts of stearic acid. The salts of stearic acid were formed by reaction of metal cation in tap water and stearic acid in the sample.

Surface Characteristics of Functional Polymer Film by Ion Beam Irradiation (이온빔 조사에 의한 기능성 고분자 필름의 표면 특성)

  • Kim, Young Jun;Hong, Seong Min;Noh, Yong Oh
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.431-436
    • /
    • 2013
  • Polycarbonate (PC) films have been irradiated with various kinds of ions according to energy and dose. Change of the optical transmittance and chemical characteristics were confirmed by UV-VIS and FTIR (ATR) spectroscopy respectively. These UV-A block in 400 nm was variable from 10 to 100% according to energy and doses. Surface electrical resistance of PC film irradiated by ion beam was $10^6-10^{13}{\Omega}/cm^2$, which reveal variation of conduction. Contact angle of film irradiated by ion beam was decreased than the pristine film. Polymer surface morphology was examined by means of atomic force microscopy (AFM). As expected, degradation of polymer film was higher after irradiation with heavier Xe ions but the roughness in the polymer surface morphology were more pronounced for Ar ions. This observed effect can be explained by stronger compaction of polymer surface layer in the case of Xe irradiation, connected with a reduction of free volume available.

Reviews in Infrared Spectroscopy and Computational Chemistry to Reveal Rhizospheric Interactions among Organic Acids, Oxyanions and Metal oxides: Fundamental Principles and Spectrum Processing (유기산, 산화음이온 및 금속 산화물 간의 근권 내 상호작용 연구를 위한 계산화학과 적외선 분광학에 관한 총설: 기본적인 원리와 스펙트럼 처리)

  • Han, Junho;Ro, Hee-Myong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.7
    • /
    • pp.426-439
    • /
    • 2017
  • This review summarizes advantage and limitation in infrared spectroscopy and computational chemistry to understand rhizospheric interaction among organic acids, oxyanions and metal oxides. Since organic acids and metal oxides determine dynamics of oxyanions in the soil environment, knowledge of fundamental mechanisms is a prerequisite for understanding the interactions at soil-water interface. Attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) is a powerful tool to measure the interfacial reactions. However, the ATR-FTIR measurements are abstruse, because the optical characteristics for measurements are variable depending on the experimental setup. In addition, spectral overlapping is a primary obstacle to the analysis of the interfacial reaction; thus, it is essential to detect and to deconvolute bands for signal interpretation. In this review, we expained the fundamental principle for spectrum processing, and four band identification methods, such as derivative spectroscopy, two-dimension correlation spectroscopy, multivariate curve resolution, and computational chemistry with example of aqueous phosphate speciation. As a result, spectrum processing and computational chemistry improved interpretation and spectral deconvolution of overlapped spectra in relatively simple systems, but it was still unsatisfactory for the problems in more complexed system like nature. Nevertheless, we believed that our challenge would contribute practically to develop adequate analytical procedure, signal processing and protocols that could help to improve interpretation and to understand the interfacial interactions of oxyanions in natural systems.