• Title/Summary/Keyword: ATP-generating system

Search Result 5, Processing Time 0.016 seconds

Production of NADP by Immobilized Brevibacterium ammoniagenes and ATP- regenerating System of Acetate Kinase (고정화 Brevibacterium ammoniagenes와 Acetate Kinase의 ATP생성계에 의한 NADP생산)

  • 조정일
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.3
    • /
    • pp.158-168
    • /
    • 1993
  • For the conversion of WAD to NADP, Immobilized Brevibacterium ammoniagenes cells with NAD kinase was coupled with ATP-generating system by acetate kinase. The membrane permeability of B. ammoniagenes was improved by toluene treatment of cells. The toluene treated B. ammoniagenes cells were immobilized for stable enzyme activity. Partially purified acetate kinase was used in the reaction system. The optimum conditions for the efficient conversion of UAD to WADP by energy-coupled system were investigated. B. ammoniagenes cells treated with toluene for the Improvement of membrane permeability showed 4.5 fold improved permeability in the conversion of NAD to NADP compared with Intact cells. 3% k-carrageenan as the immobilization matrix of B. ammoniagenes showed the best efficiency for the conversion of NAD to NADP The optimum conditions for the WAR to WARP conversion reaction coupled nth ATP-generating system were 10mM acetylphosphate, 5mM ADP 200mM inorganic phosphate, 10mM MgCl2, 250mg/ml Immobilized cells, 49.3mUnit/ml acetate kinase, pH 7.5 and 37$^{\circ}C$. Under the optimum conditions, 72% of 5mM(340mg/ml ) NAD was converted to UADP In 12 hours.

  • PDF

Production of Glutamine by Glutamine Synthetase and Acetate Kinase of Escherichia coli (Escherichia coli의 Glutamine Synthetase와 Acetate Kinase에 의한 Glutamine 생산)

  • 조정일
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.3
    • /
    • pp.169-177
    • /
    • 1993
  • The conversion of glutamate by glutamine synthetase Is the endergonic reaction that demands ATP as its energy source. In order to supply efficiently ATP that is demanded in the conversion of glutamate to glutamine, the ATP- generating system by acetate kinase partially purified from Escherichia coli K-12 was coupled with glutamine synthetase partially purified 5. coli K-12 Pgln6. The optinum conditions of the coupled reaction were investigated. As the result, the highest conversion of glutamate to glutamine was shown In the reaction mixture containing 100mM glutamate, 100mM NHtCl, 50M acetyl phosphate, 5mM ADP, 40M MgCl2, 300mM potassium phosphate buffer (pH 7.5), 5mM MnCl2, Under this condition, the most effective concentrations of enzyme were 70unit/ml glutamine synthetase and 99unit/ml acetate kinase. Under the optinum conditions, 98% of 100mM glutamate was converted to glutamine within 6 hours.

  • PDF

MOLECULAR BREEDING OF GLUTATHIONE PRODUCING BACTERIAL STRAINS

  • Nam Yong-Suk;Lee Se Yong
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 1991.04a
    • /
    • pp.237-242
    • /
    • 1991
  • In order to increase the production of glutathione by maximizing the expression of recombinant gsh plasmids, two genes responsible for the biosynthesis of glutathione were cloned. A gshI gene was cloned onto pBR322 plasmid as 3.6Kb PstI DNA fragment from E. coli K-12 chromosomal DNA. Also gshII gene was cloned onto pUC13 plasmid as 2.2Kb PstI-BamHI DNA fragment. In order to improve the glutathione producing activity more efficiently, various recombinant plasmids containing tandem repeated gshI genes or both genes in various copy number onto the same vector were constructed. E. coli cells harboring pGH501 plasmid (pUC8-gshI$\cdot$I$\cdot$II) showed the highest glutathione synthesizing activity. The conditions for glutathione production with an ATP-generating system such as acetate kinase reaction of E. coli cells or glycolytic pathway of yeast cells were examined using the E. coli cells harboring the pGH501 plasmid. When the acetate kinase reaction of E. coli cells was used as an ATP generating system, 20mM of L-csteine was converted into glutathione with a yield of $100\%$.

  • PDF

Establishment of New Method for the Assay of Glutamate-cysteine Ligase Activity in Crude Liver Extracts

  • Kwon Young-Hye;Stipanuk Martha H.
    • Toxicological Research
    • /
    • v.22 no.1
    • /
    • pp.39-45
    • /
    • 2006
  • As the antioxidant and free radical scavenger, glutathione (GSH) participates in the preservation of cellular redox status and defense against reactive oxygen species and xenobiotics. Glutamate-cysteine ligase (GCL; also known as ${\gamma}$-glutamylcysteine synthetase, EC 6.3.2.2) is the rate limiting enzyme in GSH synthesis. In the present study, the accurate method for determination of GCL activity in crude liver extracts was developed by measuring both ${\gamma}$-glutamylcysteine and GSH from cysteine in the presence of glutamate, glycine and an ATP-generating system. We added glycine to promote the conversion of ${\gamma}$-glutamylcysteine to GSH, and to minimize the possibility of ${\gamma}$-glutamylcysteine metabolism to cysteine and oxoproline by ${\gamma}$-glutamylcyclotransferase. We established optimal conditions and substrate concentrations for the enzyme assay, and verified that inhibition of GCL by GSH did not interfere with this assay. Therefore, this assay of hepatic GCL under optimal conditions could provide a more accurate measurement of this enzyme activity in the crude liver extracts.

A Effective Ant Colony Algorithm applied to the Graph Coloring Problem (그래프 착색 문제에 적용된 효과적인 Ant Colony Algorithm에 관한 연구)

  • Ahn, Sang-Huck;Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.221-226
    • /
    • 2004
  • Ant Colony System(ACS) Algorithm is new meta-heuristic for hard combinational optimization problem. It is a population-based approach that uses exploitation of positive feedback as well as greedy search. Recently, various methods and solutions are proposed to solve optimal solution of graph coloring problem that assign to color for adjacency node($v_i, v_j$) that they has not same color. In this paper introducing ANTCOL Algorithm that is method to solve solution by Ant Colony System algorithm that is not method that it is known well as solution of existent graph coloring problem. After introducing ACS algorithm and Assignment Type Problem, show the wav how to apply ACS to solve ATP And compare graph coloring result and execution time when use existent generating functions(ANT_Random, ANT_LF, ANT_SL, ANT_DSATUR, ANT_RLF method) with ANT_XRLF method that use XRLF that apply Randomize to RLF to solve ANTCOL. Also compare graph coloring result and execution time when use method to add re-search to ANT_XRLF(ANT_XRLF_R) with existent generating functions.