• Title/Summary/Keyword: ATMM

Search Result 2, Processing Time 0.013 seconds

The Analytical Transfer Matrix Method Combined with Supersymmetry: Coulomb Potential

  • Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.408-412
    • /
    • 2007
  • Combining the analytical transfer matrix method with supersymmetry algebra, a new quantization condition is suggested. To demonstrate the efficiency of the new quantization condition, the eigenenergies of the Coulomb potential are analytically derived. The scattering-led phase shifts are also determined and they are the same for all Coulomb potential states. It is found that the new quantization condition is mathematically simple and exact.

Phase Shifts of Bound State Waves Scattered at Classical Turning Points: Morse Potential

  • Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1717-1722
    • /
    • 2005
  • The analytical transfer matrix method suggests a new quantization condition for calculating bound state eigenenergies exactly. In the quantization condition, the phase shifts of bound state wave functions scattered at classical turning points are explicitly introduced. We calculate the phase shifts of eigenfunctions of the Morse potential with various boundary conditions in order to understand the physical meaning of phase shifts. The Morse potential is known to adequately describe the interaction energy between two atoms and, therefore, it is frequently used to determine the vibrational energy levels of diatomic molecules. The variation of Morse potential eigenenergies influenced upon by changing boundary conditions is also investigated.