• 제목/요약/키워드: ATIS

Search Result 83, Processing Time 0.018 seconds

A Deterministic User Optimal Traffic Assignment Model with Route Perception Characteristics of Origins and Destinations for Advanced Traveler Information System (ATIS 체계 구축을 위한 출발지와 도착지의 경로 인지 특성 반영 확정적 사용자 최적통행배정 모형)

  • Shin, Seong-Il;Sohn, Kee-Min;Lee, Chang-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.1
    • /
    • pp.10-21
    • /
    • 2008
  • User travel behavior is based on the existence of complete traffic information in deterministic user optimal principle by Wardrop(1952). According to deterministic user optimal principle, users choose the optimal route from origin to destination and they change their routes arbitrarily in order to minimize travel cost. In this principle, users only consider travel time as a factor to take their routes. However, user behavior is not determined by only travel time in actuality. Namely, the models that reflect only travel time as a route choice factor could give irrational travel behavior results. Therefore, the model is necessary that considers various factors including travel time, transportation networks structure and traffic information. In this research, more realistic deterministic optimal traffic assignment model is proposed in the way of route recognizance behavior. This model assumes that when users decide their routes, they consider many factors such as travel time, road condition and traffic information. In addition, route recognizance attributes is reflected in this suggested model by forward searching method and backward searching method with numerical formulas and algorithms.

  • PDF

Analysis of the Effects of Radio Traffic Information on Urban Worker's Travel Choice Behavior (교통방송이 제공하는 교통정보가 직장인의 통행행태에 미치는 영향 분석)

  • 윤대식
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.5
    • /
    • pp.33-43
    • /
    • 2002
  • Travel choice behavior is affected by real-time traffic information. Recently, in urban area, real-time traffic information is provided by several instruments such as transportation broadcasting, internet PC network and variable message sign, etc. Furthermore, it has been increasing for urban travelers to use real-time traffic information provided by several instruments. The purpose of this study is to analyze the effects of advanced traveler information on urban worker's travel choice behavior. Among several Advanced Traveler Information System(ATIS) employed in urban area. This study focuses on examining the effects of transportation broadcasting on urban worker's travel choice behavior. This study attempts to examine traveler's mode change behavior in the pre-trip stage and traveler's route change behavior in the on-route stage. For this study, the survey data collected from Daegu City in 2000 is used. For empirical analysis, several nested logit models are estimated, and among them, the best models are reported in this paper. Furthermore, based on the empirical models estimated for this research, important findings and their policy implications are discussed.

A Simulation-Based Investigation of an Advanced Traveler Information System with V2V in Urban Network (시뮬레이션기법을 통한 차량 간 통신을 이용한 첨단교통정보시스템의 효과 분석 (도시 도로망을 중심으로))

  • Kim, Hoe-Kyoung
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.5
    • /
    • pp.121-138
    • /
    • 2011
  • More affordable and available cutting-edge technologies (e.g., wireless vehicle communication) are regarded as a possible alternative to the fixed infrastructure-based traffic information system requiring the expensive infrastructure investments and mostly implemented in the uninterrupted freeway network with limited spatial system expansion. This paper develops an advanced decentralized traveler information System (ATIS) using vehicle-to-vehicle (V2V) communication system whose performance (drivers' travel time savings) are enhanced by three complementary functions (autonomous automatic incident detection algorithm, reliable sample size function, and driver behavior model) and evaluates it in the typical $6{\times}6$ urban grid network with non-recurrent traffic state (traffic incident) with the varying key parameters (traffic flow, communication radio range, and penetration ratio), employing the off-the-shelf microscopic simulation model (VISSIM) under the ideal vehicle communication environment. Simulation outputs indicate that as the three key parameters are increased more participating vehicles are involved for traffic data propagation in the less communication groups at the faster data dissemination speed. Also, participating vehicles saved their travel time by dynamically updating the up-to-date traffic states and searching for the new route. Focusing on the travel time difference of (instant) re-routing vehicles, lower traffic flow cases saved more time than higher traffic flow ones. This is because a relatively small number of vehicles in 300vph case re-route during the most system-efficient time period (the early time of the traffic incident) but more vehicles in 514vph case re-route during less system-efficient time period, even after the incident is resolved. Also, normally re-routings on the network-entering links saved more travel time than any other places inside the network except the case where the direct effect of traffic incident triggers vehicle re-routings during the effective incident time period and the location and direction of the incident link determines the spatial distribution of re-routing vehicles.