• Title/Summary/Keyword: ATC/ATO

Search Result 35, Processing Time 0.027 seconds

Design of Optimal control for Automatic Train Operation system in EMU

  • Han, Seong-Ho;Lee, Su-Gil;Kim, Soo-Gon;Lee, Woo-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.47.4-47
    • /
    • 2001
  • The automatic-driverless operation, a very important technique for metro railways, is necessary for achieving higher safety, greater reliability, and bigger transport capacity. To achieve these things, we have to build up the system design and tasting techniques for the railway system operation. These techniques are related to the onboard train control and communication systems which include TCMS(Train Control and Monitoring System), ATO(automatic train Operation), ATC(Automatic train Control), and TWC(Train to wayside communication). These sub-systems should interface not only with each other but also between the sub-systems and the signal system on the ground. For the saving of energy, we designed coasting strategy of ATO system, In this paper, we developed ATO system and tested on the test line and ...

  • PDF

PSD Door Response Time Improving Method in Train Manual Operation Mode (수동운전방식에서의 PSD 출입문 신호반응 시간 개선 방안 연구)

  • Lee, Moo-Ho;Kim, Chan-Cum;Lee, Suk-Jong;Lee, Soo-Young
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.559-571
    • /
    • 2008
  • Platform Screen Door(PSD) has been installed and operated at seoul subway line $1\sim4$ in the manual train operation mode(ATS/ATC) by SeoulMetro since 2005. SeoulMetro uses the wireless (RF) communication system and the train door detection system for the link between the train and PSD doors opening/closing motion in the manual train operation mode. For the convenience and safety of passengers, the train doors and the PSD doors opening/closing shall be synchronized as much as possible. In ATO(Automatic Train Operation) mode which provides the interface between train control system and PSD system, ATO signaling system makes the train doors and PSD doors open/close command signals systematically, so PSD doors can be opened/closed almost simultaneously with the train doors. But, in the manual train control(ATS/ATC) mode, PSD system needs to detect the train doors open/close operation and make PSD open/close command signals to actuate PSD doors. These PSD open/close commanding process cause time delay of PSD doors opening/closing motion in response to the train doors opening/closing motion. Sometimes the response delay time can be over 1 second, which is not proper to operate PSD, and need to be reduced This paper presents the reduction method of the PSD response delay time to improve the convenience and safety of passengers.

  • PDF

A Study of Successful Factor on PSD Application Technique for Manual Operation Mode(ATS) (수동운전(ATS)구간에서 PSD 적용 기술의 성공적 요인 분석연구)

  • Son, Yeong-Jin;Park, Keun-Soo;Min, Kyung-Yun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.755-770
    • /
    • 2006
  • 1974. 8.15 SeoulMetro, beginning with the first electric railway established at six cities, so it is managing mass transportation of traffic. Especially, in case of seoul, It is managing that from one to eight lines, 286.9km, 265 stations have installed and now it is carrying about 5.5million of passengers everyday, and 2,000million passengers a year. So accident is increasing from the station every year. For this measure, SeoulMetro prepares safety fence for passengers crash but, as suicides or people who watch the accident took place, for at the bottom of passengers crash protection, PSD installing is needed. Even though, PSD is managing ATO section but, in controlling SeoulMetro, one to four lines sections are (ATS, ATC)section. Between as ATS, ATC section, ATO section, subway gate and PSD must have opened and crossed always at the time. And the interlock control corrosion protection gate, managing skills with installation, method, using in history, apply to 10rail cars one train sets, and maximum applying 224% sections of passengers congested that consideration is to be needed. So 2004, SeoulMetro improved technology and basic design of PSD at ATS section. Based on this, from 2005.4 to 2006.6, using subway 2lines per 12stations set the model installation(full type 11stations, half type 1station) After installing in case of success, it is going about to suggest that effective analysis and hereafter subject.

  • PDF

Test running and Development of Automatic/Driverless Operation Equipment for EMU (도시철도차량용 자동/무인운전제어장치(ATO) 개발 및 본선시운전에 관한 연구)

  • Han, Seong-Ho;Ahn, Tae-Ki;Lee, Su-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1451-1453
    • /
    • 2000
  • The automatic/driverless operation which are great important techniques in metro railway are required to increase higher safety, greater reliability, and transport capacity. To satisfy such demands, we must have the system design and testing technique for the railway system operation. These techniques are related to the onboard train control and communication systems which include TCMS(Train Control and Monitoring System), ATO(Automatic train Operation), ATC(Automatic train Control), and TWC(Train to wayside communication). These sub-systems must be interfacing with not only each others but also the signal system on the ground. We tested the train control system on the 7 line that has been developed on the basis of the standardized type EMU for korea railway systems.

  • PDF

A Study on Improvement Method of the Subway Signalling System Using Automatic Train Operation Device (자동열차운전장치를 이용한 도시철도 신호설비의 개량방안에 관한 연구)

  • Kang Sung-Gu;Choi Seung-Ho;Cho Bong-Kwan
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.145-150
    • /
    • 2003
  • The national subway went under construction in 1971, and after three years of endeavor, Seoul subway line number one opened for traffic in 1974. Line number two went under construction in 1978 and it opened for traffic in 1984. With the use of safety operation for more than 20 years, the life cycle nearly came to an end. Therefore the improvements for the safety operation are unavoidable. The total system should not be affected when the new and conventional systems are overlapped, the system operation is in the initial stage, and it confronts the situation of abnormal operation. However, there is a total lack of experience in construction and improvement for the trains that are in the use of large transport and density headway. In this paper, we propose an improvement method of the subway signalling system using ATO (Automatic Train Operation control scheme) to which the latest Digital ATC is applied, and examine the first application model of ATO system.

  • PDF

The Study of Man-Machine Interface device for New On-board ATC/ATO Equipment (차세대 차상신호장치용 MMI 고찰)

  • You, Young-Jun;Park, Chong-Chon;Kang, Lee-Teag;Cho, Young-Wan;Cha, Ki-Ju
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.731-735
    • /
    • 2006
  • The Rolling Stock pursues more safe, speedy and accurate operation on the increment of the passenger and the short headway. Signalling system is providing an assurance on safety and reliability of the system, which is based on fail-safe concept. Therefore we are willing to study up on MMI device for new onboard ATP/ATO equipment which is used for driver to recognize train status and fault more quickly and to solve any problem more rapidly, which can maximize the stability and reliability of the system.

  • PDF

A Study on the Coupling Coefficient between ATP Antenna and ATS Antenna in Combined On-Board System (차상통합신호시스템에서 ATP 안테나와 ATS 안테나 사이의 결합계수에 관한 연구)

  • Kim, Doo-Gyum;Kim, Min-Seok;Kim, Min-Kyu;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.211-225
    • /
    • 2011
  • Railroad signalling systems are to control intervals and routes of trains. There are ATS(Automatic Train Stop), ATP(Automatic Train Protection), ATO(Automatic Train Operation) and ATC(Automatic Train Control) system. Trains are operated in the section which is met on the signalling system because various signalling systems are used in Korea. On the other words, trains are not operated in the section which is used in the other signalling system. To solve this problem, recently combined on-board system has been developed. The combined on-board system is designed by doubling the ATS, ATP and ATC system. Information signal is received by magnetic sensors in the ATC system and is received by antennas in the ATS and ATP system. Therefore, it is possible to arise transmission problems by magnetic coupling. In this paper, electric model of the ATS and ATP antenna is suggested and interference frequency by the magnetic coupling between the ATS and ATP antenna is estimated numerically. As a results of the magnetic coupling, the value of the magnetic coupling is presented without magnetic induction.

  • PDF

Analysis of EMI Between Overlapped Railway Signalling Systems and Its Countermeasure (철도신호시스템 중첩운영으로 인한 전자파장해현상 분석 및 대책)

  • Kho, Young-Hwan;Yoon, Sun-Ho;Choi, Kyu-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1116-1122
    • /
    • 2009
  • ATS(Automatic Train Stop) system makes train stop when it runs over the speed limit and ensure the safe operation of train. Seoul Metro line 2 in Korea, which started its passenger service in 1982, has adopted ATS system for its signaling system. The ATS system has only a train stop function at the time of emergency, and Seoul Metro is planning to replaced them with ATC(Automatic Train Control)/ATO(Automatic Train Operation) system which can provide the dedicated speed control for headway reduction and automatic operation of train. Until all the ATS system is replaced with the new ATC system, both systems are to operate simultaneously at the same metro line. In this situation, ATS system sometimes reveals improper operation: train stops suddenly without any obstacles in front of it. These emergency stops cause interruption of passenger service, and abnormal abrasion of wheels and rail. This paper makes it clear that these interruptions are caused by EMI phenomena between ATS on-board device and ATC wayside device : Signal current flowing in AF track circuit of ATC is turn out to be a EMI source that prevent normal operation of the ATS on-board device. Although the two systems have different frequency-ranges (ATS system has frequency range between $78{\sim}130$[kHz] and ATC system has frequency range between $9.5{\sim}16.5$[kHz]), it turned out that EMI phenomena appears between the both systems. This is investigated by measuring the output signal from ATS on-board device passing over ATC wayside device. The FFT(Fast Fourier Transform) analysis of the signal reveals that AF track circuit signal is transmitted to the ATS on-board device and induce noise causing improper operation. The countermeasures to the EMI phenomena are examined in three ways; blocking EMI transmission, enforcement of EMS (Electromagnetic Susceptibility) of ATS on-board device, and blocking the EMI source. It is suggested that the practical solution be blocking EMI source temporarily, that is breaking AF track circuit signal when the trains with ATS on-board device pass over it. To this purpose, TODS(Train Occupation Detection System) is developed, and has made a success in preventing the EMI problem of Seoul Metro line 2.

Analysis of Distance between ATS and ATP Antenna for Normal Operation in Combined On-board Signal System

  • Kim, Minseok;Kim, Minkyu;Kim, Doogyum;Lee, Jongwoo
    • International Journal of Railway
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 2012
  • Railroad signaling systems are to control intervals and routes of trains. There are ATS, ATP, ATO and ATC system. Trains are operated in the section which is met on the signaling system because various signaling systems are used in Korea. Hence, trains are not operated in the section which is used in the other signaling system. To solve this problem, recently combined on-board system has been developed. The combined on-board system designed by doubling the ATS, ATP and ATC system to ensure the safety of system. The inductance of antenna is change and in return the resonance frequency of antenna is varied by the electromagnetic induction. Therefore, the information signal is not received exactly in the combined on-board system and in return accidents between trains occur. In this paper, electric model of the combined on-board system for considering the ATS and ATP antenna is presented. Moreover, the mutual inductance including the distance between the ATS and ATP antenna is calculated. As a result of the frequency response of the antennas, the mutual inductance met on operation range of resonance frequency is defined.

Present Condition and View of Electronic Interlocking System for Signaling System Implementation on Train (신호설비구현을 위한 전자연동장치의 현황과 전망)

  • Lee, Jung-Geun;Lee, Hyang-Beom
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.361-365
    • /
    • 2007
  • 전자연동장치(Interlocking System)는 열차의 안전운행 확보와 함께 수송능력과 보호향상, 정확하고 신속한 운송과 더불어 이용률을 증대하는데 중요한 역할을 한다. 철도 신호보안 설비 중에서 그 핵심을 이루는 연동장치 설비에 첨단기술인 전자, 정보처리 및 정보전송기술을 철도 신호 시스템에 도입하여 신뢰성과 안정성이 확보된 신호설비를 구현하기 위해 최근에는 마이크로프로세서를 이용한 전자연동장치 기술이 개발되었다. 본 논문에서는 전자연동장치의 필요성 및 기존설비(기계 및 계전 연동장치)의 노후화에 따른 장애 및 호환성 결여 등의 문제점들을 해결하기 위하여 전자 연동장치와 기존 계전 연동장치의 차이점을 제시 및 문제 해결방안을 고찰하고, 전자연동장치 동향을 살펴보았다.

  • PDF