• Title/Summary/Keyword: ATC(Automatic Train Control)

Search Result 55, Processing Time 0.029 seconds

PSD Door Response Time Improving Method in Train Manual Operation Mode (수동운전방식에서의 PSD 출입문 신호반응 시간 개선 방안 연구)

  • Lee, Moo-Ho;Kim, Chan-Cum;Lee, Suk-Jong;Lee, Soo-Young
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.559-571
    • /
    • 2008
  • Platform Screen Door(PSD) has been installed and operated at seoul subway line $1\sim4$ in the manual train operation mode(ATS/ATC) by SeoulMetro since 2005. SeoulMetro uses the wireless (RF) communication system and the train door detection system for the link between the train and PSD doors opening/closing motion in the manual train operation mode. For the convenience and safety of passengers, the train doors and the PSD doors opening/closing shall be synchronized as much as possible. In ATO(Automatic Train Operation) mode which provides the interface between train control system and PSD system, ATO signaling system makes the train doors and PSD doors open/close command signals systematically, so PSD doors can be opened/closed almost simultaneously with the train doors. But, in the manual train control(ATS/ATC) mode, PSD system needs to detect the train doors open/close operation and make PSD open/close command signals to actuate PSD doors. These PSD open/close commanding process cause time delay of PSD doors opening/closing motion in response to the train doors opening/closing motion. Sometimes the response delay time can be over 1 second, which is not proper to operate PSD, and need to be reduced This paper presents the reduction method of the PSD response delay time to improve the convenience and safety of passengers.

  • PDF

Development of on-board ATC system for Maglev Vehicle (자기부상 차량용 차상신호장치 개발)

  • Cho, Young-Wan;Yun, Hak-Sun;Park, Hee-Jun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.350-355
    • /
    • 2011
  • This paper gives an overview and developing status of the on-board Automatic Train Control (ATC) System employed to control the Urban Maglev vehicle in Korea. In the construction of demonstration line for Urban Maglev Program, the Daewoo Engineering Company (DEC) has participated as a supplier of the whole ATC System since 2009. According to the contract with Korea Rail Network Authority, DEC is under progress for the development of the whole ATC system including Safety Integration Level (SIL) assessment from the ISA, which is followed by the international standards IEC62278, IEC62279, and EN50129. Once the Urban Maglev Program is completed successfully in 2013, the developed system will be the first localized whole ATC system which has SIL assessment and commercial operation experience in Korea.

  • PDF

The Development of Simulator for Integrated Onboard Signalling System(IOSS) (통합 차상신호장치 테스트용 시뮬레이터 개발)

  • Kim, Seok-Heon;Han, Jae-Mun;Park, Tan-Se;Cho, Yong-Gee
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.363-367
    • /
    • 2011
  • In this paper a simulator for Integrated Onboard Signalling System(IOSS) will be presented and illustrated. IOSS which is integrated with there signalling systems such as ERTMS/ETCS Level 1 ATP(Automatic Train Protection), ATC(Automatic Train Control) and ATS(Automatic Train Stop) is a signalling system for HEMU-400X(Highspeed Electric Multiple Unit - 400km/h eXperiment). HEMU-400X is under development as the next generation high-speed train in Korea. Before conducting a trial run of HEMU-400X with IOSS, we must carry out functional test of IOSS. The simulator is suggested in this paper for testing and verification of IOSS. The simulator can help to test all function of IOSS although a real train and trackside equipments are not existed. Also the simulator can make a fault in trackside equipment intentionally. In that scenario, we can figure out how IOSS handle emergency situations.

  • PDF

A Study on the Analysis of Reliability and Loss Cost by Appling k out of n System in Combined On-board Signaling System (차상통합신호시스템에서 k out of n 시스템 적용에 대한 신뢰도 및 손실비용 분석에 관한 연구)

  • Kim, Min-Kyu;Cha, Gi-Ho;Kim, Min-Seok;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.42-47
    • /
    • 2012
  • There are ATC (Automatic Train Control), ATP (Automatic Train Protection), ATS (Automatic Train Stop) and ATO (Automatic Train Operation) etc. in train control systems. As various train control systems are installed according to sections, on-board signaling systems are installed to apply to the section. Hence, operation flexibility of trains is decreased. In other words, when trains are operated in the section where other train control systems are used, the on-board signaling systems are changed. Recently, a study on the combined on-board signaling system has been researched to solve this problem. The combined on-board signaling system consists of ATC, ATP and ATS device. Because the train control systems are vital, it needs to design the combined on-board signaling system by using k out of n system. In this paper, when k out of n system is applied in the combined on-board signaling system, the reliability and loss cost are analyzed by using failure rate in each device. Hence, the ideal number of systems is presented according to the number of outputs.

A Study on the Variation of Magnetic Field Intensity by Ceramics Coating Material in AF Track Circuits (AF궤도회로에서 세라믹 코팅재에 의한 자계의 세기 변화에 대한 연구)

  • Kim, Min-Kyu;Kim, Sun-Dong;Ko, Young-Hwan;Kim, Min-Seok;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1656-1662
    • /
    • 2010
  • Automatic train control systems are divided into ATC, ATP and ATS systems etc. The ATP and ATS systems offer discontinuous information for train control. While the ATC systems provide continueous information for train control. There is a method for offering continuous information by AF track circuits. Magnetic fields are formed by current through rails in the AF track circuit systems. So, the continuous information is received by the magnetic fields on a on-board antenna. Coating materials on rails are researched to decrease defects such as head check, shelling, corrugation, squats and so on in Germany. Currently, a coating method of rail construction is proposed by using the ceramics in Korea. When deciding physical characteristic of ceramics, researches are required about variation of flux density by the ceramics. In case that the flux density is much lower than existing value, the information for train control is not transmitted to the on-board antenna. In this paper, inductance on rails is calculated and a model is presented about variation of the magnetic field intensity in the AF track circuit. Standard permeability of ceramics is proposed by analyzing the variation of magnetic field intensity. It is demonstrated by using Maxwell and Matlab program.

  • PDF

The Method of Automatic Train Control Pattern for Light Rail Transit (경량전철의 자동운전패턴에 관한 기법)

  • 이은규;최재호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.5
    • /
    • pp.344-350
    • /
    • 2004
  • This paper proposes the train control system for the LRT(light rail transit). With regard to information processing in car, we build a computer network in the car, turned the hardware required for train control into software, and developed the train control monitoring system(TCMS) and ATC. Drive type of train control system car can drive with driverless mode basically, and this paper applied special communication type for car control, data analysis, the propulsion efforts and breaking effort can control the cars. It is used vector control in propulsion control and proposed operating pattern for propulsion control thinking operating data of rubber tire LRT.

Automatic train control system of Light rail transit for Rubber Tire (고무차륜 경량전철용 자동운전 시스템의 제어방법)

  • 이은규;최재호
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.49-57
    • /
    • 2003
  • This paper proposes the Train Control System for the LRT(light rail transit). With regard to information processing in car, we build a computer network in the car, turned the hardware required for train control into software, and developed the Train Control Monitoring System(TCMS) and ATC. Drive Type of Train control system car can drive with Driverless mode basically, and this paper applied 10Mbps special communication type for car control, data analysis, The propulsion efforts and breaking effort can control the cars. It is used Vector Control in Propulsion control and proposed Operating pattern for Propulsion control thinking Operating data of Rubber Tire LRT.

Automatic train control pattern of Light Rail Transit for rubber tire (고무차륜 경량전철의 자동운전패턴)

  • Lee Eun-Kyu;Kim Chan-Soo;Baek Nam-Wook
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.223-229
    • /
    • 2003
  • This paper proposes the Train control system for the LRT(light rail transit}. With regard to information processing in car, we build a computer network in the car, turned the hardware required for train control into software, and developed the Train Control Monitoring System and ATC. Drive Type of Train control system car can drive with Driverless mode basically, and this paper applied special communication type for car control, data analysis, The propulsion efforts and breaking effort can control the cars. It is used Vector Control in Propulsion control and proposed Operating pattern for Propulsion control thinking Operating data of Rubber Tire LRT.

  • PDF

Train Operation Display and Control Techniques for Communication Based Train Control System (무선통신 기반 열차제어시스템에서의 열차운행 표시 및 제어기법)

  • 최규형
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.9
    • /
    • pp.545-551
    • /
    • 2004
  • CBTC(Communication Based Train Control) System can improve train operation efficiency by realizing moving block system which makes a continuous train interval control in accordance with the position and speed of train. Adopting radio transmission to make a continuous detection of train position and transmit the control data from the ground to a train, CBTC needs dedicated train operation and control algorithm which should be quite different from the conventional track-circuit-based train control system. This paper provides a train operation display and control algorithm for CBTC system in making train interval control, train route control and train supervision. Signalling pattern diagram is devised to analyze the train interval control mechanism of moving block system, and interlocking logic is devised to represent the train route control mechanism of moving block system. For train supervision, train occupation status on railway are displayed by using the segment which virtually divide the whole railway. The proposed method has been successfully applied to the development of CBTC system for the standardized AGT(automatic guided transit) which is under construction now in Korea, and also can be applied to any other CBTC system.

A review of ATP Onboard System's Test procedure (열차방호장치(ATP) 차상설비 시험절차에 대한 고찰)

  • Chang, Seok-Gahk;Kim, Jin-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1163-1168
    • /
    • 2008
  • Automatic Train Protection(ATP) System is developed by ETCS(European Train Control System) CONSORTIUM for unify Europe railway system. ATP system is composed of Eurobalise and EuroATC. Nowadays, Korea construct ATP system in conventional line and new electrical locomotives also install ATP system. It is important to verify quality which form checklist during Factory Acceptance Test at beyond the seas. In this paper, review the process, test item, norm and checklist for the Balise Transmission Module, Compact Antenna Unit, Vehicle Control Unit and Communication Controller at the Plymouth Bombardier and Vasteras enics factory.

  • PDF