• Title/Summary/Keyword: ASVspoof

Search Result 4, Processing Time 0.019 seconds

Comparative study of data augmentation methods for fake audio detection (음성위조 탐지에 있어서 데이터 증강 기법의 성능에 관한 비교 연구)

  • KwanYeol Park;Il-Youp Kwak
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • The data augmentation technique is effectively used to solve the problem of overfitting the model by allowing the training dataset to be viewed from various perspectives. In addition to image augmentation techniques such as rotation, cropping, horizontal flip, and vertical flip, occlusion-based data augmentation methods such as Cutmix and Cutout have been proposed. For models based on speech data, it is possible to use an occlusion-based data-based augmentation technique after converting a 1D speech signal into a 2D spectrogram. In particular, SpecAugment is an occlusion-based augmentation technique for speech spectrograms. In this study, we intend to compare and study data augmentation techniques that can be used in the problem of false-voice detection. Using data from the ASVspoof2017 and ASVspoof2019 competitions held to detect fake audio, a dataset applied with Cutout, Cutmix, and SpecAugment, an occlusion-based data augmentation method, was trained through an LCNN model. All three augmentation techniques, Cutout, Cutmix, and SpecAugment, generally improved the performance of the model. In ASVspoof2017, Cutmix, in ASVspoof2019 LA, Mixup, and in ASVspoof2019 PA, SpecAugment showed the best performance. In addition, increasing the number of masks for SpecAugment helps to improve performance. In conclusion, it is understood that the appropriate augmentation technique differs depending on the situation and data.

A Robust Method for Speech Replay Attack Detection

  • Lin, Lang;Wang, Rangding;Yan, Diqun;Dong, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.168-182
    • /
    • 2020
  • Spoofing attacks, especially replay attacks, pose great security challenges to automatic speaker verification (ASV) systems. Current works on replay attacks detection primarily focused on either developing new features or improving classifier performance, ignoring the effects of feature variability, e.g., the channel variability. In this paper, we first establish a mathematical model for replay speech and introduce a method for eliminating the negative interference of the channel. Then a novel feature is proposed to detect the replay attacks. To further boost the detection performance, four post-processing methods using normalization techniques are investigated. We evaluate our proposed method on the ASVspoof 2017 dataset. The experimental results show that our approach outperforms the competing methods in terms of detection accuracy. More interestingly, we find that the proposed normalization strategy could also improve the performance of the existing algorithms.

Data augmentation in voice spoofing problem (데이터 증강기법을 이용한 음성 위조 공격 탐지모형의 성능 향상에 대한 연구)

  • Choi, Hyo-Jung;Kwak, Il-Youp
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.449-460
    • /
    • 2021
  • ASVspoof 2017 deals with detection of replay attacks and aims to classify real human voices and fake voices. The spoofed voice refers to the voice that reproduces the original voice by different types of microphones and speakers. data augmentation research on image data has been actively conducted, and several studies have been conducted to attempt data augmentation on voice. However, there are not many attempts to augment data for voice replay attacks, so this paper explores how audio modification through data augmentation techniques affects the detection of replay attacks. A total of 7 data augmentation techniques were applied, and among them, dynamic value change (DVC) and pitch techniques helped improve performance. DVC and pitch showed an improvement of about 8% of the base model EER, and DVC in particular showed noticeable improvement in accuracy in some environments among 57 replay configurations. The greatest increase was achieved in RC53, and DVC led to an approximately 45% improvement in base model accuracy. The high-end recording and playback devices that were previously difficult to detect were well identified. Based on this study, we found that the DVC and pitch data augmentation techniques are helpful in improving performance in the voice spoofing detection problem.

CoNSIST: Consist of New Methodologies on AASIST for Audio Deepfake Detection (컨시스트: 오디오 딥페이크 탐지를 위한 그래프 어텐션 기반 새로운 모델링 방법론 연구)

  • Jae Hoon Ha;Joo Won Mun;Sang Yup Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.10
    • /
    • pp.513-519
    • /
    • 2024
  • Advancements in artificial intelligence(AI) have significantly improved deep learning-based audio deepfake technology, which has been exploited for criminal activities. To detect audio deepfake, we propose CoNSIST, an advanced audio deepfake detection model. CoNSIST builds on AASIST, which a graph-based end-to-end model, by integrating three key components: Squeeze and Excitation, Positional Encoding, and Reformulated HS-GAL. These additions aim to enhance feature extraction, eliminate unnecessary operations, and incorporate diverse information. Our experimental results demonstrate that CoNSIST significantly outperforms existing models in detecting audio deepfakes, offering a more robust solution to combat the misuse of this technology.