• Title/Summary/Keyword: ASTER Image

Search Result 37, Processing Time 0.026 seconds

Standardized Agricultural Land Use Classification Scheme at Various Spatial Resolution of Satellite Images

  • Hong Seong Min;Jung In Kyun;Park Geun Ae;Kim Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.7
    • /
    • pp.15-21
    • /
    • 2004
  • This study is to present a standardized agricultural land use classification scheme at various spatial resolution (from 1 m to 30 m) of satellite images including Landsat TM, KOMPSAT-1 EOC, ASTER VNIR and IKONOS panchromatic (PAN) and multi-spectral (MS) images. The satellite images were interpreted especially for identifying agricultural land use, crop types, agricultural facilities and structures of 18 items. It was found that there is a threshold spatial resolution between 4 m and 6.6 m to identify the full items. Thus it is suggested that IKONOS fusion image (MS enhanced by PAN) is required to produce land use map for agricultural purpose.

Standardizing Agriculture-related Land Cover Classification Scheme Using IKONOS Satellite Imagery (IKONOS 영상자료를 이용한 농업관련 토지피복 분류기준 설정 연구)

  • 홍성민;정인균;김성준
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.261-265
    • /
    • 2004
  • The purpose of this study is to present a standardized scheme for providing agriculture-related information at various spatial resolutions of satellite images including Landsat+ETM, KOMPSAT-1 EOC, ASTER VNIR, and IKONOS panchromatic and multi-spectral images. The satellite images were interpreted especially for identifying agricultural areas, crop types, agricultural facilities and structures. The results were compared with the land cover/land use classification system suggested by Ministry of Construction & Transportation based on NGIS (National Geographic Information System) and Ministry of Environment based on satellite remote sensing data. As a result, high-resolution agricultural land cover map from IKONOS imageries was made out. The results by IKONOS image will be provided to KOMPSAT-2 project for agricultural application.

  • PDF

Standardizing Agriculture-related Information Scheme at Various Spatial Resolutions of Remote Sensor Data

  • Kim, Seong J.;Jung, In K.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.561-563
    • /
    • 2003
  • This study is to present a standardized scheme for providing agriculture-related information at various spatial resolutions of satellite images including LANDSAT +ETM, KOMPSAT-1 EOC, ASTER VNIR and IKONOS panchromatic (Pan) and multi-spectral (M/S) images. The satellite images were interpreted especially for identifying agricultural areas, crop types, agricultural facilities and structures. The results were compared with the land cover/land use classification system suggested by Ministry of Construction & Transportation based on NGIS (National Geographic Information System) and Ministry of Environment based on satellite remote sensing data. The results by IKONOS image will be provided to KOMPSAT-2 project for agricultural application.

  • PDF

Corona declassified imagery for land use mapping: Application to Koh Chang, Thailand

  • Kusanagi, Michiro;Nogami, Jun;Chemin, Yann;Wandgi, Thinley Jyamtsho;Oo, Kyaw Sann;Rudrappa, Prasad Bauchkar;Hieu, Duong Van
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.891-893
    • /
    • 2003
  • This study uses the images from the Corona ‘spy’ satellite, which have been declassified in November 2002 and available on Internet order for a very low cost. The image used dates from 1973 and has about 6m panchromatic characteristics. Along with a Landsat5TM of 1990 and Aster of 2001, a temporal range of about 30 years is achieved. A simple classification of the area was processed and crosschecked manually from the available recent toposheets of Thailand. Results show the development of human infrastructure in the Protected Island of Koh Chang in Thailand, from 1973 to date. Specific human locations are identified linked either to tourism development, or to villages of fishermen. Scope for using Corona in land cover changes on a longer time period than usual satellite images is possible. Some classification issues coming from the sensor have to be taken into account. Accuracy assessment is also an issue because of the age of the sensor.

  • PDF

Development of automatic search algorithm for optimal site determination of hydroelectric dam using satellite image (위성영상을 활용한 수력발전용 댐 적지산정 알고리즘 개발)

  • Jang, Wonjin;Lee, Yonggwan;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.71-71
    • /
    • 2020
  • 최근 기후변화의 영향으로 극심한 가뭄과 홍수가 발생하고 기온 또한 꾸준히 상승하고 있으며, 이러한 변화에 대응하기 위해 전 세계에서 이산화탄소를 줄이고 국제 에너지 시장을 재구성하려는 시도가 꾸준히 이루어지고 있다. World Energy Outlook(2012)에 따르면 특히 에너지 시장에서 개발도상국의 수력분야 개발투자가 2035년까지 15,490억 달러에 이를 것으로 전망됨에 따라 국내에서 해외 수력발전사업에 적극적으로 나서고 있다. 그러나 국내와는 달리 댐 건설의 사전조사에 필요한 자료가 없거나 구축하는데 문제가 있어 손쉽게 구할 수 있는 자료로 사전에 수력발전 댐 적지를 조사할 수 있는 기술의 개발이 필요하다. 따라서 본 연구에서는 수력발전용 댐 위치 결정을 위한 예비 적지 분석 알고리즘을 개발하고, 분석 알고리즘에 위성영상자료인 30m 해상도의 ASTGTM(ASTER Global Digital Elevation Model)와 500m 해상도의 MCD12Q1(MODIS/Terra Aqua Land Cover) 토지피복자료를 사용하고자 한다. 예비 적지 분석 알고리즘은 DEM의 전처리, 하천망생성, 유역분할과 지형정보를 고려한 자동적지탐색과 댐 건설시 수몰면적에 따른 보상면적 산정 알고리즘을 포함하고 있으며 Python기반의 오픈소스 GIS로 구현되었다. 적지산정은 DEM으로부터 낙차, 도달시간, 내용적곡선과 같은 지형정보와 토지피복도를 통한 보상면적을 기반으로 순위를 매겨 사용자에게 최적의 위치들을 표출한다. 본 연구의 결과는 향후 해외 수력 댐 적지 예비분석 및 해외 수력산업 진출을 지원할 수 있을 것으로 기대된다.

  • PDF

A Study on Protection of Iris and fingerprint Data Based on Digital Watermarking in Mid-Frequency Band (중간 주파수 영역에서의 디지털 워터마킹 기법에 의한 홍채 및 지문 데이터 보호 연구)

  • Jeong, Dae-Sik;Park, Kang-Ryoung
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.9
    • /
    • pp.1227-1238
    • /
    • 2005
  • Recently, with the advance of network and internet technologies, it is appeared the Problem that the digital contents such as image, voice and video are illegally pirated and distributed. To protect the copyright of the digital contents, the digital watermarking technology of inserting the provider's information into the contents has been widely used. In this paper, we propose the method of applying the digital watermarking into biometric information such as fingerprint and iris in order to prevent the problem caused by steal and misuse. For that, we propose the method of inserting watermark in frequency domain, compare the recognition performance before and aster watermark inserting. Also, we experiment the robustness of proposed method against blurring attack, which is conventionally taken on biometrics data. Experimental results show that our proposed method can be used for protecting iris and fingerprint data, efficiently.

  • PDF

An Efficient Method to Estimate Land Surface Temperature Difference (LSTD) Using Landsat Satellite Images (Landsat 위성영상을 이용한 지표온도차 추정기법)

  • Park, Sung-Hwan;Jung, Hyung-Sup;Shin, Han-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.197-207
    • /
    • 2013
  • Difficulties of emissivity determination and atmospheric correction degrade the estimation accuracy of land surface temperature (LST). That is, since the emissivity determination of land surface material and the correction of atmospheric effect are not perfect, it is very difficult to estimate the precise LST from a thermal infrared image such as Landsat TM and ETM+, ASTER, etc. In this study, we propose an efficient method to estimate land surface temperature difference (LSTD) rather than LST from Landsat thermal band images. This method is based on the assumptions that 1) atmospheric effects are same over a image and 2) the emissivity of vegetation region is 0.99. To validate the performance of the proposed method, error sensitive analysis according to error variations of reference land surface temperature and the water vapor is performed. The results show that the estimated LSTD have respectively the errors of ${\pm}0.06K$, ${\pm}0.15K$ and ${\pm}0.30K$ when the water vapor error of ${\pm}0.302g/cm^2$ and the radiance differences of 0.2, 0.5 and $1.0Wm^{-2}sr^{-1}{\mu}m$ are considered. And also the errors of the LSTD estimation are respectively ${\pm}0.037K$, ${\pm}0.089K$, ${\pm}0.168K$ in the reference land surface temperature error of ${\pm}2.41K$. Therefore, the proposed method enables to estimate the LSTD with the accuracy of less than 0.5K.