• Title/Summary/Keyword: ASCAT

Search Result 18, Processing Time 0.031 seconds

Analysis of the Impact of QuikSCAT and ASCAT Sea Wind Data Assimilation on the Prediction of Regional Wind Field near Coastal Area (QuikSCAT과 ASCAT 해상풍 자료동화가 연안 지역 국지 바람장 예측에 미치는 영향 분석)

  • Lee, Soon-Hwan
    • Journal of the Korean earth science society
    • /
    • v.33 no.4
    • /
    • pp.309-319
    • /
    • 2012
  • In order to clarify the characteristics of satellite based sea wind data assimilations applied for the estimation of wind resources around the Korean peninsula, several numerical experiments were carried out using WRF. Satellite sea wind data used in this study are QuikSCAT from NASA and ASCAT from ESA. When the wind resources are estimated with data assimilation, its estimation accuracy is improved clearly. Since the band width is broad for QuikSCAT, statistical accuracy of the estimated wind resources with QuikSCAT assimilations is better than that with ASCAT assimilations. But the wind estimated around sub-satellite point matches better with of ASCAT compared to QuikSCAT assimilation. The impact of sea wind data assimilation on the prediction of wind resources lasts for 6 hours after data assimilation starts, therefore the data assimilation processes using both fine spatial and temporal resolutions of sea wind are needed to make a more useful wind resource map of the Korean Peninsula.

Investigation of Analysis Effects of ASCAT Data Assimilation within KIAPS-LETKF System (앙상블 자료동화 시스템에서 ASCAT 해상풍 자료동화가 분석장에 미치는 효과 분석)

  • Jo, Youngsoon;Lim, Sujeong;Kwon, In-Hyuk;Han, Hyun-Jun
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.263-272
    • /
    • 2018
  • The high-resolution ocean surface wind vector produced by scatterometer was assimilated within the Local Ensemble Transform Kalman Filter (LETKF) in Korea Institute of Atmospheric Prediction Systems (KIAPS). The Advanced Scatterometer (ASCAT) on Metop-A/B wind data was processed in the KIAPS Package for Observation Processing (KPOP), and a module capable of processing surface wind observation was implemented in the LETKF system. The LETKF data assimilation cycle for evaluating the performance improvement due to ASCAT observation was carried out for approximately 20 days from June through July 2017 when Typhoon Nepartak was present. As a result, we have found that the performance of ASCAT wind vector has a clear and beneficial effect on the data assimilation cycle. It has reduced analysis errors of wind, temperature, and humidity, as well as analysis errors of lower troposphere wind. Furthermore, by the assimilation of the ASCAT wind observation, the initial condition of the model described the typhoon structure more accurately and improved the typhoon track prediction skill. Therefore, we can expect the analysis field of LETKF will be improved if the Scatterometer wind observation is added.

Analysis on Adequacy of the Satellite Soil Moisture Data (AMSR2, ASCAT, and ESACCI) in Korean Peninsula: With Classification of Freezing and Melting Periods (인공위성 기반 토양 수분 자료들(AMSR2, ASCAT, and ESACCI)의 한반도 적절성 분석: 동결과 융해 기간을 구분하여)

  • Baik, Jongjin;Cho, Seongkeun;Lee, Seulchan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.625-636
    • /
    • 2019
  • Soil moisture is a representative factor that plays a key role in hydrological cycle. It is involved in the interaction between atmosphere and land surface, and is used in fields such as agriculture and water resources. Advanced Microwave Scanning Radiometer 2 (AMSR2), Advanced SCATterometer (ASCAT), and European Space Agency Climate Change Initiative (ESACCI) data were used to analyze the applicability and uncertainty of satellite soil moisture product in the Korean peninsula. Cumulative distribution function (CDF) matching and triple collocation (TC) analysis were carried out to investigate uncertainty and correction of satellite soil moisture data. Comparisons of pre-calibration satellite soil moisture data with the Automated Agriculture Observing System (AAOS) indicated that ESACCI and ASCAT data reflect the trend of AAOS well. On the other hand, AMSR2 satellite data showed overestimated values during the freezing period. Correction of satellite soil moisture data using CDF matching improved the error and correlation compared to those before correction. Finally, uncertainty analysis of soil moisture was carried out using TC method. Clearly, the uncertainty of the satellite soil moisture, corrected by CDF matching, was diminished in both freezing and thawing periods. Overall, it is expected that using ASCAT and ESACCI rather than AMSR2 soil moisture data will give more accurate soil moisture information when correction is performed on the Korean peninsula.

An inter-comparison of satellite-based soil moisture over East Asia (동아시아 지역 토양수분 산출 위성 평가)

  • Kim, Hyunglok;SunWoo, Wooyeon;Choi, Minha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.187-187
    • /
    • 2015
  • 인공위성을 이용한 토양수분의 측정은, 범지구적인 물순환 분석에 있어서, 수문학적인 인자들의 시공간적인 변화를 예측, 분석하는데 있어 가장 효율적인 방법으로 제안되어왔다. 현재 국/내 외 적으로 사용하는 토양수분 위성은 Soil Moisture and Ocean Salinity (SMOS), Advanced SCATerometer (ASCAT)이 많이 사용되고 있으며, 더불어 일본에서 최근에 발사 된 Advanced Microwave Scanning Radiomter 2 (AMSR2) 센서를 통한 토양수분도 데이터도 적극 활용 되고 있다. 각 위성은 토양수분을 산출 하는 알고리즘, 파장대 그리고 위성 통과 시간 등이 각기 다르므로, 이러한 위성의 데이터를 사용하기 위해서는 지점 데이터와의 검증이 필수적으로 필요하게 된다. 이에따라 본 연구에서는 위성 데이터와 Global Land Data Assimilation System (GLDAS)와의 비교를 통해 각 위성데이터의 동아시아 지역에서의 효용성을 평가하였다. 동아시아의 건조한 지역에서는 SMOS가 가장 좋은 토양수분 데이터 결과를 보여주었으며, 다른 많은 지역에서는 ASCAT이 우세한 결과를 보여주었다. 하지만 한반도 지역의 특정 지역에서는 AMSR2의 토양수분 값이 ASCAT을 뛰어넘는 좋은 결과를 보여주는 결과가 도출되었다. 추가적으로, SMOS의 경우 Radio Frequency Interference (RFI)의 영향으로 한반도지역 토양수분을 측정하는 것에는 많은 무리가 있음을 알 수 있었다.

  • PDF

Improving soil moisture accuracy in ungauged areas using Multi-Satellite data (다종위성에 근거한 미계측 지역의 토양수분 정확도 향상에 관한 연구)

  • Doyoung Kim;Hyunho Jeon;Seulchan Lee;Minha Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.433-433
    • /
    • 2023
  • 토양수분은 물 순환의 필수적인 요소로써 수문순환 및 기상 현상에 큰 영향을 미친다. 현재 우리나라에서는 토양수분 자료구축을 위해 Frequency Domain Reflectometry (FDR), Time Domain Reflectometry (TDR) 센서를 활용하여 지점 단위 토양수분 자료를 생산하고 있다. 그러나 한반도는 도서, 산간 지역이 다수 분포하고 있어, 지점관측 센서만으로 공간 대표성을 갖는 토양수분 자료를 산출하기 어렵다. 이에, 광범위한 지역을 장기간 모니터링 할 수 있는 원격탐사 기법을 활용하여, Advanced SCATterometer (ASCAT), Soil Moisture Active and Passive (SMAP) 등의 공간 단위 토양수분 자료의 적용성이 평가되고 있다. 하지만, 공간 토양수분 자료의 검증을 위해 필수적인 지점 토양수분 자료가 구축되지 않은 미계측지역이 다수 존재하며, 한반도와 같이 지형적 복잡성이 높게 나타나는 지역에서는 계측지역에서의 활용성 평가 결과가 미계측지역에서도 유사하게 나타난다고 가정하기 어렵다. 이에 본 연구에서는, 미계측지역의 공간 토양수분 자료를 산출하고자 계측지역에서 SM2RAIN 알고리즘으로 산출된 강수량 자료와 위성 산출 자료 그리고 지점관측 자료의 관계성을 분석했다. SM2RAIN 알고리즘의 입력자료는 Advanced SCATterometer (ASCAT) 토양수분 자료를 활용했다. ASCAT 토양수분 자료와 SM2RAIN 강수 자료의 검증을 위해 기상청에서 제공하는 Automated Agriculture Observing System (AAOS) 토양수분 자료, Automatic Weather System (AWS) 강수량 자료와 Global Precipitation Measurement (GPM) 강수 자료를 활용하였다. 전반적으로 ASCAT 토양수분을 통해 산출한 SM2RAIN 강수량의 추정과GPM 강수량이 유의미한 상관성이 나타나는 것을 확인할 수 있었으며, 추후 Downscaling 기법과 연계하여 지형적 복잡성이 높게 나타나는 지역의 토양수분 추정이 가능할 것으로 기대된다.

  • PDF

Spatial Downscaling of Satellite-based Soil Moisture Using Support Vector Machine in Northeast Asia (기계학습을 활용한 동북아시아 지역 위성 토양수분 데이터 상세화 연구: AMSR2, ASCAT 데이터를 활용하여)

  • Choi, Min Ha;Kim, Seongkyun;Kim, Hyung Lok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.208-208
    • /
    • 2016
  • 수문순환과정의 시공간적 거동을 해석하고 이를 정량화 하는 것은 효율적인 수자원 관리 및 계획을 위해 반드시 선행되어야 하는 연구이다. 특히 토양수분은 물 에너지 순환에서 지표면과 대기 사이의 복잡한 관계를 이해하기 위한 중요한 수문인자로, 이를 정확하게 측정하기 위한 방법들이 다각도로 발전되어 왔다. 그 중 위성 데이터를 활용한 토양수분 산정은 미계측 지역의 토양수분을 지속적이고 광역적이게 관측할 수 있는 선진 기술로 각광받고 있다. 그러나 대부분의 위성 자료들이 가지고 있는 공간 해상도는 복잡한 지형 환경을 대상으로 한 지역의 원격 탐사로서는 국지적인 수문학적 현상들을 분석하는데 어려움을 가지고 있다. 특히 우리나라의 경우 국토의 70% 정도가 산지로 이루어져 있으며 경사도가 $5^{\circ}$ 이하의 평탄한 지역은 약 23%에 그치는 등 복잡한 식생 지형 환경을 가지고 있다. 따라서 인공위성의 해상도와 식생 투과도를 고려할 때 저 해상도의 위성 토양수분만으로는 우리나라와 같이 면적에 비해 복잡한 환경에 기반 한 수문학적 현상들을 충분히 분석하는데 한계점이 있다. 따라서 본 연구에서는 support vector machine (SVM) 기계학습을 활용하여 ASCAT과 AMSR2 위성 토양수분의 상세화를 수행하여 고해상도의 토양수분을 산정하였고, 이를 지점관측 자료와 비교해 상세화도 자료의 신뢰성을 평가하였다. 검증된 고해상도 토양수분 데이터는 향후 자연재해 분석에 있어 예측의 정확성을 높이고 수문순환 및 기후 모델링에 있어서 중요한 입력 인자로 활용될 것으로 기대된다.

  • PDF

Estimation and Statistical Characteristics of the Radius of Maximum Wind of Tropical Cyclones using COMS IR Imagery (천리안 위성 적외 영상 자료를 이용한 태풍의 최대풍속반경 산출 및 통계적 특성)

  • Kwon, MinHo
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.473-481
    • /
    • 2012
  • The objective methods estimating the radius of maximum wind (RMW) of tropical cyclones (TCs) are discussed using infraed (IR) imagery of geostationary satellite, and an alternative method is suggested that can estimate RMW in the TCs having eyes using IR imagery. The RMW-estimating methods are based on the characteristic structure of the eyewall of a tropical cyclone. RMW is dependent upon the radius of the eye and the distance from the center to the top of the most developed convective cloud. In order to test these methods, blackbody brightness temperature of Korean geostationary satellite, COMS (Communication, Ocean, and Meteorological Satellite) IR imagery are utilized in this study. The estimated RMWs are compared with surface winds of ASCAT (Advanced Scatterometer) of a polar orbiting satellite.

Estimation of dryness index based on COMS to monitoring the soil moisture status at the Korean peninsula (한반도 토양수분 상태 모니터링을 위한 천리안 정지궤도 위성 기반 건조 지수 산정)

  • Jeong, Jaehwan;Baik, Jongjin;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.89-98
    • /
    • 2018
  • Satellite data have attracted attention on research such as natural disaster and climate changes because satellite data is very advantageous for observing a wide range of variability. However, there are still limited spatial and temporal resolutions in satellite data. To overcome these limitations, fusion of various sensors and combination of primary products are used. In this study, surface temperature data of 500 m spatial resolution was produced by fusion of GOCI and MI data of COMS. Also these LST are used with NDVI for estimating TVDI. Soil moisture condition of the Korean peninsula was evaluated by these TVDI and it was compared with SSMI derived from ASCAT surface soil moisture data. As a result, COMS TVDI and ASCAT SSMI showed similar spatial distribution and suggested the possibility of observing the soil moisture using COMS. Therefore, the TVDI estimations can be used as a basis for estimating the high resolution soil moisture, and the application of the COMS can be expanded for various studies.

River Flow Forecasting using Satellite-based Products and Machine Learning Technique over the Ungauged River Flow in Korean Peninsula, Imjin River: Using MODIS, ASCAT, and SDS dataset (위성 데이터 및 기계 학습 기법을 활용한 한반도 임진강 미계측 지역 유출량 예측: MODIS, ASCAT, SDS 데이터를 활용하여)

  • Choi, Min Ha;Kim, Hyung Lok;Li, Li;Jun, Kyung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.159-159
    • /
    • 2016
  • 북한 지역에서 시작되어 한반도의 금문댐까지 연결되는 임진강은 북한지역의 유출량 미계측으로 인해 유출량 산출에 많은 어려움이 있어왔다. 본 연구에서는 위성 데이터를 활용하여 미계측 유역의 유출량을 추정 할 수 있는 기법을 제시하였다. Satellite-derived Flow Signal (SDF)는 위성 기반 특정 지역의 유출 정보를 제공하며, JAXA의 GCOM-W1 위성에 탑재된 Advanced Microwave Scanning Radiometer 2(AMSR2) 센서에서 산출된다. 본 연구에서는 SDS 뿐 아니라 유출에 크게 관련이 있는 지표 토양수분 데이터와 식생인자를 임진강 유출 값을 예측하기 위한 입력 값으로 활용하였다. 토양수분 데이터는 Metop-A 위성에 탑재된 Advanced Scatterometer(ASCAT) 센서에서 산출되는 데이터를 활용하였으며, 식생데이터는 Aqua 위성에 탑재된 Moderate Resolution Imaging Spectroradiometer(MODIS) 센서에서 측정되는 Normalized Difference Vegetation Index(NDVI) 데이터를 활용하였다. 추가적으로 SDS, 토양수분, NDVI 데이터는 다양한 lag time으로 약 150여개의 입력데이터로 세분화되었다. 150개의 방대한 입력인자는 Partial Mutual Information(PMI) 방법을 통해 소수 중요 인자들로 간추려져 기계 학습 입력인자로 활용되었다. 기계학습에 있어서는 Support Vector Machine(SVM), Artificial Neural Network (ANN) 기법을 활용하였다. SVM, ANN을 통해 모델화된 유출데이터는 금문댐 유출데이터와 비교/분석되었다. SVM 기법 기반의 유출량은 실제 유출량과 0.73의 상관계수를 보여주었고, ANN 기법 기반의 유출량은 0.66의 상관계수를 결과를 나타내었다. 하지만 SVM 기반 유출데이터는 과소 산정 되는 경향을 보였으며, ANN 기법 기반의 유출량은 과대산정되는 결과가 산출되는 한계점이 있음을 파악할 수 있었다.

  • PDF

Validation of Satellite Scatterometer Sea-Surface Wind Vectors (MetOp-A/B ASCAT) in the Korean Coastal Region (한반도 연안해역에서 인공위성 산란계(MetOp-A/B ASCAT) 해상풍 검증)

  • Kwak, Byeong-Dae;Park, Kyung-Ae;Woo, Hye-Jin;Kim, Hee-Young;Hong, Sung-Eun;Sohn, Eun-Ha
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.536-555
    • /
    • 2021
  • Sea-surface wind is an important variable in ocean-atmosphere interactions, leading to the changes in ocean surface currents and circulation, mixed layers, and heat flux. With the development of satellite technology, sea-surface winds data retrieved from scatterometer observation data have been used for various purposes. In a complex marine environment such as the Korean Peninsula coast, scatterometer-observed sea-surface wind is an important factor for analyzing ocean and atmospheric phenomena. Therefore, the validation results of wind accuracy can be used for diverse applications. In this study, the sea-surface winds derived from ASCAT (Advanced SCATterometer) mounted on MetOp-A/B (METeorological Operational Satellite-A/B) were validated compared to in-situ wind measurements at 16 marine buoy stations around the Korean Peninsula from January to December 2020. The buoy winds measured at a height of 4-5 m from the sea surface were converted to 10-m neutral winds using the LKB (Liu-Katsaros-Businger) model. The matchup procedure produced 5,544 and 10,051 collocation points for MetOp-A and MetOp-B, respectively. The root mean square errors (RMSE) were 1.36 and 1.28 m s-1, and bias errors amounted to 0.44 and 0.65 m s-1 for MetOp-A and MetOp-B, respectively. The wind directions of both scatterometers exhibited negative biases of -8.03° and -6.97° and RMSE values of 32.46° and 36.06° for MetOp-A and MetOp-B, respectively. These errors were likely associated with the stratification and dynamics of the marine-atmospheric boundary layer. In the seas around the Korean Peninsula, the sea-surface winds of the ASCAT tended to be more overestimated than the in-situ wind speeds, particularly at weak wind speeds. In addition, the closer the distance from the coast, the more the amplification of error. The present results could contribute to the development of a prediction model as improved input data and the understanding of air-sea interaction and impact of typhoons in the coastal regions around the Korean Peninsula.