• Title/Summary/Keyword: AS wire

Search Result 3,135, Processing Time 0.026 seconds

Development of Isothermal Pass Schedule Program for the Re-design of a Continuous High Carbon Steel Wire Drawing Process (고탄소강 연속 신선 공정의 재설계를 위한 등온패스스케줄 프로그램의 개발)

  • Kim, Young-Sik;Kim, Dong-Hwan;Kim, Byung-Min;Kim, Min-An;Park, Yong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.57-64
    • /
    • 2001
  • The high speed in the wire-drawing process to meet the demands for the increased productivity has a great effect on the heat generated due to plastic deformation and friction between the wire and the drawing dies. During the high carbon steel wire drawing process, the temperature rise gives a great influence to the fracture of wire. In this paper, to control the temperature rise in the wire after the deformation through the drawing die, the calculation method of the wire temperature, which includes the temperature rise in the deformation zone as well as the temperature drop in the block considering the heat transfer among the wire, cooling water and surrounding air, is proposed. These calculated results of the wire temperature at the inlet and exit of the drawing die at each pass are compared with the measured wire temperatures and verified its efficiency. So, using the program to predict the wire temperature, the isothermal pass schedule program was developed. By applying this isothermal pass schedule program to the conventional process condition, a new isothermal pass schedule is redesigned through all passes. As a result, the possibility of wire fracture could be considerably reduced and the productivity of final product could be more increased than before.

  • PDF

Wire Rope Fault Detection using Probability Density Estimation (확률분포추정기법을 이용한 와이어로프의 결함진단)

  • Jang, Hyeon-Seok;Lee, Young-Jin;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1758-1764
    • /
    • 2012
  • A large number of wire rope has been used in various inderstiries as Cranes and Elevators from expanding the scale of the industrial market. But now, the management of wire rope is used as manually operated by rope replacement from over time or after the accident.It is caused to major accidents as well as economic losses and personal injury. Therefore its time to need periodic fault diagnosis of wire rope or supply of real-time monitoring system. Currently, there are several methods has been reported for fault diagnosis method of the wire rope, to find out the feature point from extracting method is becoming more common compared to time wave and model-based system. This method has implemented a deterministic modeling like the observer and neural network through considering the state of the system as a deterministic signal. However, the out-put of real system has probability characteristics, and if it is used as a current method on this system, the performance will be decreased at the real time. And if the random noise is occurred from unstable measure/experiment environment in wire rope system, diagnostic criterion becomes unclear and accuracy of diagnosis becomes blurred. Thus, more sophisticated techniques are required rather than deterministic fault diagnosis algorithm. In this paper, we developed the fault diagnosis of the wire rope using probability density estimation techniques algorithm. At first, The steady-state wire rope fault signal detection is defined as the probability model through probability distribution estimate. Wire rope defects signal is detected by a hall sensor in real-time, it is estimated by proposed probability estimation algorithm. we judge whether wire rope has defection or not using the error value from comparing two probability distribution.

Analysis of Multi-Pass Wet Wire Drawing Process and Its Application (다단 습식 신선공정 해석 및 적용)

  • Lee S. K.;Kim B. M.
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.689-695
    • /
    • 2005
  • Multi-pass wet wire drawing process is used to produce fine wire in the industrial field. The production of fine wire through multi-pass wet wire drawing process with appropriate dies pass schedule would be impossible without understanding the relationship among many process parameters such as material properties, dies reduction, friction conditions, drawing speed etc However, in the industrial field, dies pass schedule of multi-pass wet wire drawing process has been executed by trial and error of experts. This study investigated the relationship among many process parameters quantitatively to obtain the important process information fur the appropriate pass schedule of multi-pass wet wire drawing process. Therefore, it is possible to predict the many important process parameters of multi-pass wet wire drawing process such as dies reduction, machine reduction, drawing force, backtension force, slip rate, slip velocity rate, power etc. The validity of the analyzed drawing force was verified by FE simulation and multi-pass wet wire drawing experiment. Also, pass redesign was performed based on the analyzed results, and the wire breakage between the original pass schedule and the redesigned pass schedule was compared through experiment.

The Coating Materials of Electrode Materials on Machinability of W-EDM (와이어전극의 도금재료가 W-EDM 가공성에 미치는 영향)

  • 김창호;허관도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.735-738
    • /
    • 2000
  • The characteristics of wire electrical discharge machining (WEDM) are governed by many factors such as the power supply type, operating condition and electrode material. This work deals with the effect of wire electrode materials on the machining characteristics such as, metal removal rate, surface characteristics and surface roughness during WEDM A wire's thermal physical properties are melting point, electrical conductivity and vapor pressure. One of the desired qualities of wire is a low melting point and high vapor pressure to help expel the contaminants from the gap. They are determined by the mix of alloying elements (in the case of plain brass and coated wire) or the base core material(i.e. molybdenum). Experiments have been conducted regarding the choice of suitable wire electrode materials and influence of the properties of these materials on the machinability and surface characteristics in WEDM, the experimental results are presented and discussed from their metallurgical aspect. And the coating effect of various alloying elements(Au, Ag, Cu, Zn, Cr, Mn, etc.) to the Cu or 65-35 brass core on them was reviewed also. The removal rate of some coated wires are higher than that of 65-35 brass electrode wire because the wire is difficult to break due to the wire cooling effect of Zn evaporation latent heat and the Zn oxide on the surface is effective in preventing short circuit. The removal rate increases with increasing Zn content from 35, 40 and Zn coated wire

  • PDF

Flow and Convective Heat Transfer Analysis Using RANS for A Wire-Wrapped Fuel Assembly

  • Ahmad, Imteyaz;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1514-1524
    • /
    • 2006
  • This work presents the three-dimensional analysis of flow and heat transfer performed for a wire-wrapped fuel assembly of liquid metal reactor using Reynolds-averaged Wavier-Stokes analysis in conjunction with 557 model as a turbulence closure. The whole fuel assembly has been analyzed for one period of the wire-spacer using periodic boundary conditions at inlet and outlet of the calculation domain. Three different assemblies, two 7-pin wire-spacer fuel assemblies and one bare rod bundle, apart from the pressure drop calculations for a 19-pin case, have been analyzed. Individual as well as a comparative analysis of the flow field and heat transfer have been discussed. Also, discussed is the position of hot spots observed in the wire-spacer fuel assembly. The flow field in the subchannels of a bare rod bundle and a wire-spacer fuel assembly is found to be different. A directional temperature gradient is found to exist in the subchannels of a wire-spacer fuel assembly Local Nusselt number in the subchannels of wire-spacer fuel assemblies is found to vary according to the wire-wrap position while in case of bare rod bundle, it's found to be constant.

An Improvement of Expendable Bathythermograph Measurement Mechanism for Anti-Submarine Warfare (대잠용 수온측정계 측정 메커니즘 개선)

  • Shin, Sang-Sik;Cho, Hwan Hwi;Park, Seung Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.3
    • /
    • pp.301-310
    • /
    • 2014
  • Purpose: The purpose of this study is to improve a mechanism of expendable bathythermograph measurement by balancing wire resistances between plus wire part and minus wire part and by removing effects of sea water resistance between XBT(Expendable Bathythermograph) and temperature recorder. Methods: The problems are exactly found out through the analysis of XBT and temperature recorder circuit. A process of XBT manufacturing that balances wire resistances between plus wire part and minus wire part is added. Results: The results of this study are as follows; the complicated test process such as temperature accuracy test with a cistern is substituted with a simple process of XBT manufacturing such as balancing wire resistances between plus wire part and minus wire part. Then, the temperature accuracy tolerance of XBT is improved up to ${\pm}0.1^{\circ}C$. Conclusion: Consequently, balancing wire resistances and removing effects of sea water resistance improve temperature accuracy of XBT and reduce expensive and harassing process of XBT manufacturing.

Characteristics of Wire EDM for Cold Die Steel due to the Different Wire Electrode Component (전극선 성분 변화에 따른 냉간금형용강의 와이어방전가공 특성)

  • Wang, Duck-Hyun;Jeong, Sun-Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.98-105
    • /
    • 2003
  • In the experimental study, wire EDM was conducted for cold die steel by changing the Wire electrode, peak discharge current and number of finish cut. From the micro structure analysis of SEM photographs, the size of irregular welded and added component on the EDMed surface is decreasing and size of EDMed plane surface is increasing as the decreasing peak current and increasing number of finish cut. From the analysis of coating effect, Zn component is highly contained in Br and Zn Wire EDMed surface and copper component is highly contained in Br and Al wire EDMed surface. Hardness values are Increasing as the increasing peak current and decreasing the number of finish cut The value of hardness is decreasing as Cu, Al, Zn and Br wire electrode because of the residual austenite effect of solid solution copper on solidification, and finally EDMed surface has the highest hardness values for every wire electrode. Yield strength values becomes larger and bending strength values become smaller due to the increasing the hardness. These results are increased as increasing brittleness with hardness.

  • PDF

Development of Analysis Program for Multi-Pass Wet Wire Drawing Process (습식 다단 인발공정 해석 프로그램 개발)

  • Lee S. K.;Kim B. M.;Kim M. A.;Park B. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.216-219
    • /
    • 2001
  • The production of fine wire through multi-pass wet wire drawing process would be impossible with no backtension at inlet of dies. Backtension is affected by many process parameters, such as dies reduction, coiling number of wire at capstan, machine constant, slip between wire and capstan, characteristic of lubricant and so on. Up to date, dies design and dies pass schedule of multi-pass wet wire drawing process have performed by trial and error of expert in the Industrial field without consideration of quantitative relation among process variables. Thus study investigates the multi-pass wet wire drawing process considering the relation among process variables, such as dies reduction, coiling number of wire at capstan, machine constant, slip between wire and capstan, etc. And analysis program which can analyze many important process values(drawing force, backtension force, slip rate, slip velocity rate, etc) for die design and dies pass schedule of multi-pass wet wire drawing process was developed.

  • PDF

The Study on Explosion Phenomena of a Metal Wire by Rapid Heating in Water (초고속가열에 의한 금속세선의 폭발현상에 관한 연구)

  • Jang, In-Seon;Kim, Jong-Su
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.1
    • /
    • pp.27-37
    • /
    • 1997
  • The aim of the present study is to investigate experimentally the mechanism of an exploding wire in water and also to observe the bubble motion induced by an exploding wire. The experiment of an exploding wire is carried out in a water tank. As a metallic wire, a tungsten wire of 0.2mm in diameter and 10mm in length is employed. The electric energy of 50-300J is fed to the wire from a capacitor of 100$\mu$F charged up to 1-2.5kV. The explosion is recorded by a CCD camera with the resolution of 1$\mu$sec. The explosion process of metallic wire is divided into three phases. Phase 1 : As the voltage is applied to the wire, the temperature increases due to Joule heating and the wire emits light. Phase 2 : Then the wire melts and the cylindrical plasma is formed between the electrodes. Up to this stage, strong light emission is observed. Phase 3 : The light emission goes out and a vapor bubble begins to grow spherically. The radius of a bubble oscillates in time, but the amplitude of oscillation diminishes in several cycles.

  • PDF

Pass Schedule Design for Improvement of Drawing Speed in the Dry Wire Drawing Process (신선 속도 향상을 위한 건식 신선 공정의 패스스케줄 설계)

  • 김영식;김동환;김병민;김민안;박용민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.600-603
    • /
    • 2000
  • In the high carbon steel wire drawing process, the wire temperature increases as the drawing speed is faster in order to increase the production rate in the shop floor. The rapid temperature rise causes the wire fracture in the dry wire drawing process. So, in this paper, the isothermal pass schedule program, which includes the calculation method of wire temperature at each pass, is proposed to prevent the wire fracture due to the temperature rise. Using the isothermal pass schedule program, it is newly proposed the pass schedule design system that prevents the cup-cone defects, improves the elongation of the final products and assures further deformation. As a result, the temperature rise of the wire was decreased and the production rate of the final product is remarkably grown up according to the increase of the final drawing speed than that of the conventional process. Also, the proposed pass schedule design system could give a useful information to the process designer who would design the high carbon steel wire drawing process.

  • PDF