• Title/Summary/Keyword: ARX-based lightweight block cipher

Search Result 4, Processing Time 0.018 seconds

DABC: A dynamic ARX-based lightweight block cipher with high diffusion

  • Wen, Chen;Lang, Li;Ying, Guo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.165-184
    • /
    • 2023
  • The ARX-based lightweight block cipher is widely used in resource-constrained IoT devices due to fast and simple operation of software and hardware platforms. However, there are three weaknesses to ARX-based lightweight block ciphers. Firstly, only half of the data can be changed in one round. Secondly, traditional ARX-based lightweight block ciphers are static structures, which provide limited security. Thirdly, it has poor diffusion when the initial plaintext and key are all 0 or all 1. This paper proposes a new dynamic ARX-based lightweight block cipher to overcome these weaknesses, called DABC. DABC can change all data in one round, which overcomes the first weakness. This paper combines the key and the generalized two-dimensional cat map to construct a dynamic permutation layer P1, which improves the uncertainty between different rounds of DABC. The non-linear component of the round function alternately uses NAND gate and AND gate to increase the complexity of the attack, which overcomes the third weakness. Meanwhile, this paper proposes the round-based architecture of DABC and conducted ASIC and FPGA implementation. The hardware results show that DABC has less hardware resource and high throughput. Finally, the safety evaluation results show that DABC has a good avalanche effect and security.

Fault Injection Attack on Lightweight Block Cipher CHAM (경량 암호 알고리듬 CHAM에 대한 오류 주입 공격)

  • Kwon, Hongpil;Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.5
    • /
    • pp.1071-1078
    • /
    • 2018
  • Recently, a family of lightweight block ciphers CHAM that has effective performance on resource-constrained devices is proposed. The CHAM uses a stateless-on-the-fly key schedule method which can reduce the key storage areas. Furthermore, the core design of CHAM is based on ARX(Addition, Rotation and XOR) operations which can enhance the computational performance. Nevertheless, we point out that the CHAM algorithm may be vulnerable to the fault injection attack which can reveal 4 round keys and derive the secret key from them. As a simulation result, the proposed fault injection attack can extract the secret key of CHAM-128/128 block cipher using about 24 correct-faulty cipher text pairs.

Application and Analysis of Masking Method to Implement Secure Lightweight Block Cipher CHAM Against Side-Channel Attack Attacks (부채널 공격에 대응하는 경량 블록 암호 CHAM 구현을 위한 마스킹 기법 적용 및 분석)

  • Kwon, Hongpil;Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.709-718
    • /
    • 2019
  • A lightweight block cipher CHAM designed for suitability in resource-constrained environment has reasonable security level and high computational performance. Since this cipher may contain intrinsic weakness on side channel attack, it should adopt a countermeasure such as masking method. In this paper, we implement the masked CHAM cipher on 32-bit microprosessor Cortex-M3 platform to resist against side channel attack and analyze their computational performance. Based on the shortcoming of having many round functions, we apply reduced masking method to the implementation of CHAM cipher. As a result, we show that the CHAM-128/128 algorithm applied reduced masking technique requires additional operations about four times.

Low-Power Encryption Algorithm Block Cipher in JavaScript

  • Seo, Hwajeong;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.4
    • /
    • pp.252-256
    • /
    • 2014
  • Traditional block cipher Advanced Encryption Standard (AES) is widely used in the field of network security, but it has high overhead on each operation. In the 15th international workshop on information security applications, a novel lightweight and low-power encryption algorithm named low-power encryption algorithm (LEA) was released. This algorithm has certain useful features for hardware and software implementations, that is, simple addition, rotation, exclusive-or (ARX) operations, non-Substitute-BOX architecture, and 32-bit word size. In this study, we further improve the LEA encryptions for cloud computing. The Web-based implementations include JavaScript and assembly codes. Unlike normal implementation, JavaScript does not support unsigned integer and rotation operations; therefore, we present several techniques for resolving this issue. Furthermore, the proposed method yields a speed-optimized result and shows high performance enhancements. Each implementation is tested using various Web browsers, such as Google Chrome, Internet Explorer, and Mozilla Firefox, and on various devices including personal computers and mobile devices. These results extend the use of LEA encryption to any circumstance.