• Title/Summary/Keyword: ART2 neural network

Search Result 136, Processing Time 0.026 seconds

Signal Processing using Fuzzy Logic and Neural Network for Welding Gap Detection

  • Kim, Gwan-Hyung;Kim, Il;Lee, Sang-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.178-183
    • /
    • 2001
  • Welding is essential for the manufacture of a range of engineering components which may vary from very large structures such as ships and bridges to very complex structures such as aircraft engines, or miniature components for microelectronic applications. Especially, a domestic situation of the welding automation is still depend on the arc sensing system in comparison to the vision sensing system. Specially, the gap-detecting of workpiece using conventional arc sensor is proposed in this study. As a same principle, a welding current varies with the size of a welding gap. This study introduce to the fuzzy membership filter to cancel a high frequency noise of welding current, and ART2 which has the competitive learning network classifies the signal patterns the filtered welding signal. A welding current possesses a specific pattern according to the existence or the size of a welding gap. These specific patterns result in different classification in comparison with an occasion for no welding gap. The patterns in each case of 1mm, 2mm, 3mm and no welding gap are identified by the artificial neural network.

  • PDF

Automatic Color Transformation of Characters Between 2D Animation Scenes Using Neural Network (신경회로망을 이용한 2D 애니메이션 장면 간의 캐릭터 자동 색 변환)

  • Jung, Hyun-Sun;Lee, Jae-Sik;Kim, Jae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.9
    • /
    • pp.1286-1295
    • /
    • 2008
  • Colors of 2D animation characters are generally assigned by art directors' subjective color sense. Even same characters should be colored differently according to the mood of animation scenes. In this study, we introduce the model for automatic color transformation of characters by using neural network. It can not only create automatically colors of characters which are good matched with 2D animation scenes but also reproduce art directors' subjective color sense. Specifically, this neural network model is initially made to learn the patterns of color change between basic colors of characters and colors of characters in various scene. Then if you know basic colors of some characters, you can derive colors of characters under other light source environments using the learned neural network. Subjective ratings(which is adopted to verify the proposed model) by color experts on the automatically transformed colors showed that the colors created by the model tended to be evaluated natural.

  • PDF

Robust architecture search using network adaptation

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.290-294
    • /
    • 2021
  • Experts have designed popular and successful model architectures, which, however, were not the optimal option for different scenarios. Despite the remarkable performances achieved by deep neural networks, manually designed networks for classification tasks are the backbone of object detection. One major challenge is the ImageNet pre-training of the search space representation; moreover, the searched network incurs huge computational cost. Therefore, to overcome the obstacle of the pre-training process, we introduce a network adaptation technique using a pre-trained backbone model tested on ImageNet. The adaptation method can efficiently adapt the manually designed network on ImageNet to the new object-detection task. Neural architecture search (NAS) is adopted to adapt the architecture of the network. The adaptation is conducted on the MobileNetV2 network. The proposed NAS is tested using SSDLite detector. The results demonstrate increased performance compared to existing network architecture in terms of search cost, total number of adder arithmetics (Madds), and mean Average Precision(mAP). The total computational cost of the proposed NAS is much less than that of the State Of The Art (SOTA) NAS method.

A Study on the Welding Gap Detecting Using Pattern Classification by ART2 and Fuzzy Membership Filter

  • Kim, Tae-Yeong;Kim, Gwan-Hyung;Lee, Sang-Bae;Kim, Il
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.527-531
    • /
    • 1998
  • This study introduce to the fuzzy membership filter to cancel a high frequency noise of welding current. And ART2 which has the competitive learning network classifiers the signal patterns for the filtered welding signal. A welding current possesses a specific pattern according to the existence or the size of a welding gap. These specific patterns result in different classification in comparison with an occasion for no welding gap. The patterns In each case of 1mm, 2mm, 3mm, and no welding gap are identified by the artificial neural network. These procedure is an off-line execution. In on-line execution, the identification model of neural network for the classified pattern is located on ahead of the welding plant. And when the welding current patterns pass through the neural network in the direction of feedforward. it is possible to recognize the existence or the size of a welding gap.

  • PDF

The Robust Pattern Recognition System for Flexible Manufacture Automation (유연 생산 자동화를 위한 Robust 패턴인식 시스템)

  • Wi, Young-Ryang;Kim, Mun-Hwa;Jang, Dong-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.2
    • /
    • pp.223-240
    • /
    • 1998
  • The purpose of this paper is to develop the pattern recognition system with a 'Robust' concept to be applicable to flexible manufacture automation in practice. The 'Robust' concept has four meanings as follows. First, pattern recognition is performed invariantly in case the object to be recognized is translated, scaled, and rotated. Second, it must have strong resistance against noise. Third, the completely learned system is adjusted flexibly regardless of new objects being added. Finally, it has to recognize objects fast. To develop the proposed system, contouring, spectral analysis and Fuzzy ART neural network are used in this study. Contouring and spectral analysis are used in preprocessing stage, and Fuzzy ART is used in object classification stage. Fuzzy ART is an unsupervised neural network for solving the stability-plasticity dilemma.

  • PDF

Grouping Parts Based on Group Technology Using a Neural Network (신경망을 이용한 GT 부품군 형성의 자동화)

  • Lee, Sung-Youl
    • IE interfaces
    • /
    • v.11 no.2
    • /
    • pp.119-124
    • /
    • 1998
  • This paper proposes a new part family classification system (IPFACS: Image Processing and Fuzzy ART based Clustering System), which incorporates image processing techniques and a modified fuzzy ART neural network algorithm. IPFACS can classify parts based on geometrical shape and manufacturing attributes, simultaneously. With a proper reduction and normalization of an image data through the image processing methods and adding method in the modified Fuzzy ART, different types of geometrical shape data and manufacturing attribute data can be simultaneously classified in the same system. IPFACS has been tested for an example set of hypothetical parts. The results show that IPFACS provides a good feasible approach to form families based on both geometrical shape and manufacturing attributes.

  • PDF

Quantitative analysis of gas mixtures using a tin oxide gas sensor and fast pattern recognition methods (반도체식 가스센서와 패턴인식방법을 이용한 혼합가스의 정량적 분석)

  • Lee, Jeong-Hun;Cho, Jung-Hwan;Jeon, Gi-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.138-140
    • /
    • 2005
  • A fuzzy ARTMAP neural network and a fuzzy ART neural network are proposed to identify $H_2S$, $NH_3$ and their mixtures and to estimate their concentrations, respectively. Features are extracted from a micro gas sensor array operated in a thermal modulation plan. After dimensions of the features are reduced by a preprocessing scheme, the features are fed into the proposed fuzzy neural networks. By computer simulations, the proposed methods are shown to be fast in learning and accurate in concentration estimating. The results are compared with other methods and discussed.

  • PDF

Tool Breakage Detection in Face Milling Using a Self Organized Neural Network (자기구성 신경회로망을 이용한 면삭밀링에서의 공구파단검출)

  • 고태조;조동우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1939-1951
    • /
    • 1994
  • This study introduces a new tool breakage detecting technology comprised of an unsupervised neural network combined with adaptive time series autoregressive(AR) model where parameters are estimated recursively at each sampling instant using a parameter adaptation algorithm based on an RLS(Recursive Least Square). Experiment indicates that AR parameters are good features for tool breakage, therefore it can be detected by tracking the evolution of the AR parameters during milling process. an ART 2(Adaptive Resonance Theory 2) neural network is used for clustering of tool states using these parameters and the network is capable of self organizing without supervised learning. This system operates successfully under the wide range of cutting conditions without a priori knowledge of the process, with fast monitoring time.

A Study on Enhanced Self-Generation Supervised Learning Algorithm for Image Recognition (영상 인식을 위한 개선된 자가 생성 지도 학습 알고리듬에 관한 연구)

  • Kim, Tae-Kyung;Kim, Kwang-Baek;Paik, Joon-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2C
    • /
    • pp.31-40
    • /
    • 2005
  • we propose an enhanced self-generation supervised algorithm that by combining an ART algorithm and the delta-bar-delta method. Form the input layer to the hidden layer, ART-1 and ART-2 are used to produce nodes, respectively. A winner-take-all method is adopted to the connection weight adaption so that a stored pattern for some pattern is updated. we test the recognition of student identification, a certificate of residence, and an identifier from container that require nodes of hidden layers in neural network. In simulation results, the proposed self-generation supervised learning algorithm reduces the possibility of local minima and improves learning speed and paralysis than conventional neural networks.

Ensemble techniques and hybrid intelligence algorithms for shear strength prediction of squat reinforced concrete walls

  • Mohammad Sadegh Barkhordari;Leonardo M. Massone
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.37-59
    • /
    • 2023
  • Squat reinforced concrete (SRC) shear walls are a critical part of the structure for both office/residential buildings and nuclear structures due to their significant role in withstanding seismic loads. Despite this, empirical formulae in current design standards and published studies demonstrate a considerable disparity in predicting SRC wall shear strength. The goal of this research is to develop and evaluate hybrid and ensemble artificial neural network (ANN) models. State-of-the-art population-based algorithms are used in this research for hybrid intelligence algorithms. Six models are developed, including Honey Badger Algorithm (HBA) with ANN (HBA-ANN), Hunger Games Search with ANN (HGS-ANN), fitness-distance balance coyote optimization algorithm (FDB-COA) with ANN (FDB-COA-ANN), Averaging Ensemble (AE) neural network, Snapshot Ensemble (SE) neural network, and Stacked Generalization (SG) ensemble neural network. A total of 434 test results of SRC walls is utilized to train and assess the models. The results reveal that the SG model not only minimizes prediction variance but also produces predictions (with R2= 0.99) that are superior to other models.