To precisely and reliably analyze the contents of the satellite imagery, recognizing the clouds which are the obstacle to gathering the useful information is essential. In recent times, deep learning yielded satisfactory results in various tasks, so many studies using deep neural networks have been conducted to improve the performance of cloud detection. However, existing methods for cloud detection have the limitation on increasing the performance due to the adopting the network models for semantic image segmentation without modification. To tackle this problem, we introduced the multi-branch neural architecture search to find optimal network structure for cloud detection. Additionally, the proposed method adopts the soft intersection over union (IoU) as loss function to mitigate the disagreement between the loss function and the evaluation metric and uses the various data augmentation methods. The experiments are conducted using the cloud detection dataset acquired by Arirang-3/3A satellite imagery. The experimental results showed that the proposed network which are searched network architecture using cloud dataset is 4% higher than the existing network model which are searched network structure using urban street scenes with regard to the IoU. Also, the experimental results showed that the soft IoU exhibits the best performance on cloud detection among the various loss functions. When comparing the proposed method with the state-of-the-art (SOTA) models in the field of semantic segmentation, the proposed method showed better performance than the SOTA models with regard to the mean IoU and overall accuracy.
KIPS Transactions on Software and Data Engineering
/
v.7
no.2
/
pp.69-76
/
2018
Referring expressions are natural language constructions used to identify particular objects within a scene. In this paper, we propose a new deep neural network model for referring expression comprehension. The proposed model finds out the region of the referred object in the given image by making use of the rich information about the referred object itself, the context object, and the relationship with the context object mentioned in the referring expression. In the proposed model, the object matching score and the relationship matching score are combined to compute the fitness score of each candidate region according to the structure of the referring expression sentence. Therefore, the proposed model consists of four different sub-networks: Language Representation Network(LRN), Object Matching Network (OMN), Relationship Matching Network(RMN), and Weighted Composition Network(WCN). We demonstrate that our model achieves state-of-the-art results for comprehension on three referring expression datasets.
We propose a method to improve the robustness of speaker verification on short test utterances. The accuracy of the state-of-the-art i-vector/probabilistic linear discriminant analysis systems can be degraded when testing utterance durations are short. The proposed method compensates for utterance variations of short test feature vectors using deep neural networks. We design three different types of DNN (Deep Neural Network) structures which are trained with different target output vectors. Each DNN is trained to minimize the discrepancy between the feed-forwarded output of a given short utterance feature and its original long utterance feature. We use short 2-10 s condition of the NIST (National Institute of Standards Technology, U.S.) 2008 SRE (Speaker Recognition Evaluation) corpus to evaluate the method. The experimental results show that the proposed method reduces the minimum detection cost relative to the baseline system.
The Journal of the Korea institute of electronic communication sciences
/
v.5
no.3
/
pp.304-308
/
2010
In this paper, we propose a new method of recognizing the vehicle license plate using color space, morphological characteristics and ART2 algorithm. Morphological characteristics of old and/or new style vehicle license plate among the candidate regions are applied to remove noise areas using 8-directional contour tracking algorithm, then follow by the extraction of vehicle plate. From the extracted license plate area, plate morphological characteristics of each region are removed. After that, labeling algorithm to extract the individual characters are then combined. The classified individual character and numeric codes are applied to the ART2 algorithm for the learning and recognition. In order to evaluate the performance of our proposed extraction and recognition of vehicle license method, we have run experiments on 100 green plates and white plates. Experimental results shown that the proposed license plate extraction and recognition method was effective.
Xiong, Wei;Jia, Xiuhong;Yang, Dichun;Ai, Meihui;Li, Lirong;Wang, Song
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.5
/
pp.1778-1797
/
2021
Document image binarization is an important pre-processing step in document analysis and archiving. The state-of-the-art models for document image binarization are variants of encoder-decoder architectures, such as FCN (fully convolutional network) and U-Net. Despite their success, they still suffer from three limitations: (1) reduced feature map resolution due to consecutive strided pooling or convolutions, (2) multiple scales of target objects, and (3) reduced localization accuracy due to the built-in invariance of deep convolutional neural networks (DCNNs). To overcome these three challenges, we propose an improved semantic segmentation model, referred to as DP-LinkNet, which adopts the D-LinkNet architecture as its backbone, with the proposed hybrid dilated convolution (HDC) and spatial pyramid pooling (SPP) modules between the encoder and the decoder. Extensive experiments are conducted on recent document image binarization competition (DIBCO) and handwritten document image binarization competition (H-DIBCO) benchmark datasets. Results show that our proposed DP-LinkNet outperforms other state-of-the-art techniques by a large margin. Our implementation and the pre-trained models are available at https://github.com/beargolden/DP-LinkNet.
The video face recognition (FR) is one of the most popular researches in the field of computer vision due to a variety of applications. In particular, research using the attention mechanism is being actively conducted. In video face recognition, attention represents where to focus on by using the input value of the whole or a specific region, or which frame to focus on when there are many frames. In this paper, we propose a novel attention based deep learning method. Main novelties of our method are (1) the use of combining two loss functions, namely weighted Softmax loss function and a Triplet loss function and (2) the feasibility of end-to-end learning which includes the feature embedding network and attention weight computation. The feature embedding network has a positive effect on the attention weight computation by using combined loss function and end-to-end learning. To demonstrate the effectiveness of our proposed method, extensive and comparative experiments have been carried out to evaluate our method on IJB-A dataset with their standard evaluation protocols. Our proposed method represented better or comparable recognition rate compared to other state-of-the-art video FR methods.
Automatic Music Transcription (AMT) is a task that detects and recognizes musical note events from a given audio recording. In this paper, we focus on reducing the latency of real-time AMT systems on piano music. Although neural AMT models have been adapted for real-time piano transcription, they suffer from high latency, which hinders their usefulness in interactive scenarios. To tackle this issue, we explore several techniques for reducing the intrinsic latency of a neural network for piano transcription, including reducing window and hop sizes of Fast Fourier Transformation (FFT), modifying convolutional layer's kernel size, and shifting the label in the time-axis to train the model to predict onset earlier. Our experiments demonstrate that combining these approaches can lower latency while maintaining high transcription accuracy. Specifically, our modified model achieved note F1 scores of 92.67 % and 90.51 % with latencies of 96 ms and 64 ms, respectively, compared to the baseline model's note F1 score of 93.43 % with a latency of 160 ms. This methodology has potential for training AMT models for various interactive scenarios, including providing real-time feedback for piano education.
Nguyen, Van Ngoc Nghia;Nguyen, Thanh Binh;Chung, Sun-Tae
Journal of Korea Multimedia Society
/
v.22
no.2
/
pp.167-177
/
2019
Even though so much progresses have been achieved in Multiple Object Tracking (MOT), most of reported MOT methods are not still satisfactory for commercial embedded products like Pan-Tilt-Zoom (PTZ) camera. In this paper, we propose a real-time multiple pedestrians tracking method for embedded environments. First, we design a new light weight convolutional neural network(CNN)-based pedestrian detector, which is constructed to detect even small size pedestrians, as well. For further saving of processing time, the designed detector is applied for every other frame, and Kalman filter is employed to predict pedestrians' positions in frames where the designed CNN-based detector is not applied. The pose orientation information is incorporated to enhance object association for tracking pedestrians without further computational cost. Through experiments on Nvidia's embedded computing board, Jetson TX2, it is verified that the designed pedestrian detector detects even small size pedestrians fast and well, compared to many state-of-the-art detectors, and that the proposed tracking method can track pedestrians in real-time and show accuracy performance comparably to performances of many state-of-the-art tracking methods, which do not target for operation in embedded systems.
Nguyen, Huy Toan;Yu, Gwang Hyun;Na, Seung You;Kim, Jin Young;Seo, Kyung Sik
The Journal of Korean Institute of Information Technology
/
v.17
no.9
/
pp.99-112
/
2019
Cracks on pavement surfaces are critical signs and symptoms of the degradation of pavement structures. Image-based pavement crack detection is a challenging problem due to the intensity inhomogeneity, topology complexity, low contrast, and noisy texture background. In this paper, we address the problem of pavement crack detection and segmentation at pixel-level based on a Deep Neural Network (DNN) using gray-scale images. We propose a novel DNN architecture which contains a modified U-net network and a high-level features network. An important contribution of this work is the combination of these networks afforded through the fusion layer. To the best of our knowledge, this is the first paper introducing this combination for pavement crack segmentation and detection problem. The system performance of crack detection and segmentation is enhanced dramatically by using our novel architecture. We thoroughly implement and evaluate our proposed system on two open data sets: the Crack Forest Dataset (CFD) and the AigleRN dataset. Experimental results demonstrate that our system outperforms eight state-of-the-art methods on the same data sets.
International Journal of Computer Science & Network Security
/
v.22
no.2
/
pp.214-222
/
2022
Convolutional Neural networks (CNNs) are a category of deep learning networks that have proven very effective in computer vision tasks such as image classification. Notwithstanding, not much has been seen in its use for remote sensing image classification in developing countries. This is majorly due to the scarcity of training data. Recently, transfer learning technique has successfully been used to develop state-of-the art models for remote sensing (RS) image classification tasks using training and testing data from well-known RS data repositories. However, the ability of such model to classify RS test data from a different dataset has not been sufficiently investigated. In this paper, we propose a deep CNN model that can classify RS test data from a dataset different from the training dataset. To achieve our objective, we first, re-trained a ResNet-50 model using EuroSAT, a large-scale RS dataset to develop a base model then we integrated Augmentation and Ensemble learning to improve its generalization ability. We further experimented on the ability of this model to classify a novel dataset (Nig_Images). The final classification results shows that our model achieves a 96% and 80% accuracy on EuroSAT and Nig_Images test data respectively. Adequate knowledge and usage of this framework is expected to encourage research and the usage of deep CNNs for land cover mapping in cases of lack of training data as obtainable in developing countries.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.