• Title/Summary/Keyword: ART2 Neural network

Search Result 136, Processing Time 0.025 seconds

Feature Area-based Vehicle Plate Recognition System(VPRS) (특징 영역 기반의 자동차 번호판 인식 시스템)

  • Jo, Bo-Ho;Jeong, Seong-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.6
    • /
    • pp.1686-1692
    • /
    • 1999
  • This paper describes the feature area-based vehicle plate recognition system(VPRS). For the extraction of vehicle plate in a vehicle image, we used the method which extracts vehicle plate area from a s vehicle image using intensity variation. For the extraction of the feature area containing character from the extracted vehicle plate, we used the histogram-based approach and the relative location information of individual characters in the extracted vehicle plate. The extracted feature area is used as the input vector of ART2 neural network. The proposed method simplifies the existing complex preprocessing the solves the problem of distortion and noise in the binarization process. In the difficult cases of character extraction by binarization process of previous method, our method efficiently extracts characters regions and recognizes it.

  • PDF

A Study on the Tool Wear and Surface Roughness in Cutting Processes for a Neural-Network-Based Remote Monitoring system (신경회로망을 이용한 원격모니터링을 위한 가공공정의 공구마모와 표면조도에 관한 연구)

  • Kwon, Jung-Hee;Jang, U-Il;Jeong, Seong-Hyun;Kim, Do-Un;Hong, Dae-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.33-39
    • /
    • 2012
  • The tool wear and failure in automatic production system directly influences the quality and productivity of a product, thus it is essential to monitor the tool state in real time. For such purpose, an ART2-based remote monitoring system has been developed to predict the appropriate tool change time in accordance with the tool wear, and this study aims to experimently find the relationship between the tool wear and the monitoring signals in cutting processes. Also, the roughness of workpiece according to the wool wear is examined. Here, the tool wear is indirectly monitored by signals from a vibration senor attached to a machining center. and the wear dimension is measured by a microscope at the start, midways and the end of a cutting process. A series of experiments are carried out with various feedrates and spindle speeds, and the results show that the sensor signal properly represents the degree of wear of a tool being used, and the roughnesses measured has direct relation with the tool wear dimension. Thus, it is concluded that the monitoring signals from the vibration sensor can be used as a useful measure for the tool wear monitoring.

Real-time Background Music System for Immersive Dialogue in Metaverse based on Dialogue Emotion (메타버스 대화의 몰입감 증진을 위한 대화 감정 기반 실시간 배경음악 시스템 구현)

  • Kirak Kim;Sangah Lee;Nahyeon Kim;Moonryul Jung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.4
    • /
    • pp.1-6
    • /
    • 2023
  • To enhance immersive experiences for metaverse environements, background music is often used. However, the background music is mostly pre-matched and repeated which might occur a distractive experience to users as it does not align well with rapidly changing user-interactive contents. Thus, we implemented a system to provide a more immersive metaverse conversation experience by 1) developing a regression neural network that extracts emotions from an utterance using KEMDy20, the Korean multimodal emotion dataset 2) selecting music corresponding to the extracted emotions from an utterance by the DEAM dataset where music is tagged with arousal-valence levels 3) combining it with a virtual space where users can have a real-time conversation with avatars.

A robust approach in prediction of RCFST columns using machine learning algorithm

  • Van-Thanh Pham;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.153-173
    • /
    • 2023
  • Rectangular concrete-filled steel tubular (RCFST) column, a type of concrete-filled steel tubular (CFST), is widely used in compression members of structures because of its advantages. This paper proposes a robust machine learning-based framework for predicting the ultimate compressive strength of RCFST columns under both concentric and eccentric loading. The gradient boosting neural network (GBNN), an efficient and up-to-date ML algorithm, is utilized for developing a predictive model in the proposed framework. A total of 890 experimental data of RCFST columns, which is categorized into two datasets of concentric and eccentric compression, is carefully collected to serve as training and testing purposes. The accuracy of the proposed model is demonstrated by comparing its performance with seven state-of-the-art machine learning methods including decision tree (DT), random forest (RF), support vector machines (SVM), deep learning (DL), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and categorical gradient boosting (CatBoost). Four available design codes, including the European (EC4), American concrete institute (ACI), American institute of steel construction (AISC), and Australian/New Zealand (AS/NZS) are refereed in another comparison. The results demonstrate that the proposed GBNN method is a robust and powerful approach to obtain the ultimate strength of RCFST columns.

Model-based fault detection and isolation of a linear system (선형시스템의 모델기반 고장감지와 분류)

  • 이인수;전기준
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.1
    • /
    • pp.68-79
    • /
    • 1998
  • In this paper, we propose a model-based FDI(fault detetion and isolation) algorithm to detect and isolate fault in a linear system. The proposed algorithm is gased on an HFC(hydrid fault classifier) which consists of an FCART2(fault classifier by ART2 neural network) and an FCFM(fault classifier by fault models) which operate in parallel to isolate faults. The proposed algorithm is functionally composed of three main parts-parameter estimation, fault detection, and isolation. When a change in the system occurs, the estimated parameters go through a transition zone in which errors between the system output and the stimated output and the estimated output cross a predetermined thrseshold, and in this zone the estimated parameters are tranferred to the FCART2 for fault isolation. On the other hand, once a fault in the system is detected, the FCFM statistically isolates the fault by using the error between ach fault model out put and the system output. From the computer simulation resutls, it is verified that the proposed model-based FDI algorithm can be performed successfully to detect and isolate faults in a position control system of a DC motor.

  • PDF

A Study on Utilization of Vision Transformer for CTR Prediction (CTR 예측을 위한 비전 트랜스포머 활용에 관한 연구)

  • Kim, Tae-Suk;Kim, Seokhun;Im, Kwang Hyuk
    • Knowledge Management Research
    • /
    • v.22 no.4
    • /
    • pp.27-40
    • /
    • 2021
  • Click-Through Rate (CTR) prediction is a key function that determines the ranking of candidate items in the recommendation system and recommends high-ranking items to reduce customer information overload and achieve profit maximization through sales promotion. The fields of natural language processing and image classification are achieving remarkable growth through the use of deep neural networks. Recently, a transformer model based on an attention mechanism, differentiated from the mainstream models in the fields of natural language processing and image classification, has been proposed to achieve state-of-the-art in this field. In this study, we present a method for improving the performance of a transformer model for CTR prediction. In order to analyze the effect of discrete and categorical CTR data characteristics different from natural language and image data on performance, experiments on embedding regularization and transformer normalization are performed. According to the experimental results, it was confirmed that the prediction performance of the transformer was significantly improved when the L2 generalization was applied in the embedding process for CTR data input processing and when batch normalization was applied instead of layer normalization, which is the default regularization method, to the transformer model.

A Manufacturing Cell Formantion Algorithm Using Neural Networks (신경망을 이용한 제조셀 형성 알고리듬)

  • 이준한;김양렬
    • Korean Management Science Review
    • /
    • v.16 no.1
    • /
    • pp.157-171
    • /
    • 1999
  • In a increasingly competitive marketplace, the manufacturing companies have no choice but looking for ways to improve productivity to sustain their competitiveness and survive in the industry. Recently cellular manufacturing has been under discussion as an option to be easily implemented without burdensome capital investment. The objective of cellular manufacturing is to realize many aspects of efficiencies associated with mass production in the less repetitive job-shop production systems. The very first step for cellular manufacturing is to group the sets of parts having similar processing requirements into part families, and the equipment needed to process a particular part family into machine cells. The underlying problem to determine the part and machine assignments to each manufacturing cell is called the cell formation. The purpose of this study is to develop a clustering algorithm based on the neural network approach which overcomes the drawbacks of ART1 algorithm for cell formation problems. In this paper, a generalized learning vector quantization(GLVQ) algorithm was devised in order to transform a 0/1 part-machine assignment matrix into the matrix with diagonal blocks in such a way to increase clustering performance. Furthermore, an assignment problem model and a rearrangement procedure has been embedded to increase efficiency. The performance of the proposed algorithm has been evaluated using data sets adopted by prior studies on cell formation. The proposed algorithm dominates almost all the cell formation reported so far, based on the grouping index($\alpha$ = 0.2). Among 27 cell formation problems investigated, the result by the proposed algorithm was superior in 11, equal 15, and inferior only in 1.

  • PDF

Automatic detection of periodontal compromised teeth in digital panoramic radiographs using faster regional convolutional neural networks

  • Thanathornwong, Bhornsawan;Suebnukarn, Siriwan
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.169-174
    • /
    • 2020
  • Purpose: Periodontal disease causes tooth loss and is associated with cardiovascular diseases, diabetes, and rheumatoid arthritis. The present study proposes using a deep learning-based object detection method to identify periodontally compromised teeth on digital panoramic radiographs. A faster regional convolutional neural network (faster R-CNN) which is a state-of-the-art deep detection network, was adapted from the natural image domain using a small annotated clinical data- set. Materials and Methods: In total, 100 digital panoramic radiographs of periodontally compromised patients were retrospectively collected from our hospital's information system and augmented. The periodontally compromised teeth found in each image were annotated by experts in periodontology to obtain the ground truth. The Keras library, which is written in Python, was used to train and test the model on a single NVidia 1080Ti GPU. The faster R-CNN model used a pretrained ResNet architecture. Results: The average precision rate of 0.81 demonstrated that there was a significant region of overlap between the predicted regions and the ground truth. The average recall rate of 0.80 showed that the periodontally compromised teeth regions generated by the detection method excluded healthiest teeth areas. In addition, the model achieved a sensitivity of 0.84, a specificity of 0.88 and an F-measure of 0.81. Conclusion: The faster R-CNN trained on a limited amount of labeled imaging data performed satisfactorily in detecting periodontally compromised teeth. The application of a faster R-CNN to assist in the detection of periodontally compromised teeth may reduce diagnostic effort by saving assessment time and allowing automated screening documentation.

One Step Measurements of hippocampal Pure Volumes from MRI Data Using an Ensemble Model of 3-D Convolutional Neural Network

  • Basher, Abol;Ahmed, Samsuddin;Jung, Ho Yub
    • Smart Media Journal
    • /
    • v.9 no.2
    • /
    • pp.22-32
    • /
    • 2020
  • The hippocampal volume atrophy is known to be linked with neuro-degenerative disorders and it is also one of the most important early biomarkers for Alzheimer's disease detection. The measurements of hippocampal pure volumes from Magnetic Resonance Imaging (MRI) is a crucial task and state-of-the-art methods require a large amount of time. In addition, the structural brain development is investigated using MRI data, where brain morphometry (e.g. cortical thickness, volume, surface area etc.) study is one of the significant parts of the analysis. In this study, we have proposed a patch-based ensemble model of 3-D convolutional neural network (CNN) to measure the hippocampal pure volume from MRI data. The 3-D patches were extracted from the volumetric MRI scans to train the proposed 3-D CNN models. The trained models are used to construct the ensemble 3-D CNN model and the aggregated model predicts the pure volume in one-step in the test phase. Our approach takes only 5 seconds to estimate the volumes from an MRI scan. The average errors for the proposed ensemble 3-D CNN model are 11.7±8.8 (error%±STD) and 12.5±12.8 (error%±STD) for the left and right hippocampi of 65 test MRI scans, respectively. The quantitative study on the predicted volumes over the ground truth volumes shows that the proposed approach can be used as a proxy.

A Study on Containerports Clustering Using Artificial Neural Network(Multilayer Perceptron and Radial Basis Function), Social Network, and Tabu Search Models with Empirical Verification of Clustering Using the Second Stage(Type IV) Cross-Efficiency Matrix Clustering Model (인공신경망모형(다층퍼셉트론, 방사형기저함수), 사회연결망모형, 타부서치모형을 이용한 컨테이너항만의 클러스터링 측정 및 2단계(Type IV) 교차효율성 메트릭스 군집모형을 이용한 실증적 검증에 관한 연구)

  • Park, Ro-Kyung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.757-772
    • /
    • 2019
  • The purpose of this paper is to measure the clustering change and analyze empirical results, and choose the clustering ports for Busan, Incheon, and Gwangyang ports by using Artificial Neural Network, Social Network, and Tabu Search models on 38 Asian container ports over the period 2007-2016. The models consider number of cranes, depth, birth length, and total area as inputs and container throughput as output. Followings are the main empirical results. First, the variables ranking order which affects the clustering according to artificial neural network are TEU, birth length, depth, total area, and number of cranes. Second, social network analysis shows the same clustering in the benevolent and aggressive models. Third, the efficiency of domestic ports are worsened after clustering using social network analysis and tabu search models. Forth, social network and tabu search models can increase the efficiency by 37% compared to that of the general CCR model. Fifth, according to the social network analysis and tabu search models, 3 Korean ports could be clustered with Asian ports like Busan Port(Kobe, Osaka, Port Klang, Tanjung Pelepas, and Manila), Incheon Port(Shahid Rajaee, and Gwangyang), and Gwangyang Port(Aqaba, Port Sulatan Qaboos, Dammam, Khor Fakkan, and Incheon). Korean seaport authority should introduce port improvement plans by using the methods used in this paper.