• Title/Summary/Keyword: ARS1

Search Result 252, Processing Time 0.018 seconds

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.

Combined Effect of Ganciclovir and Vidarabine on the Replication, DNA Synthesis, and Gene Expression of Acyclovir-resistant Herpes Simplex Virus (Acyclovir저항성 Herpes Simplex Virus의 복제, DNA합성 및 형질 발현에 미치는 Ganciclovir 및 Vidarabine의 병용효과에 관한 연구)

  • Yang, Young-Tai;Cheong, Dong-Kyun;Mori, Masakazu
    • The Korean Journal of Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.115-134
    • /
    • 1989
  • Combined effects of ganciclovir (GCV) and vidarabine (ara-A) on the replication, DNA synthesis, and gene expression of wild type-1 herpes simplex virus (HSV-1) and three acyclovir (ACV)-resistant HSV-1 mutants were studied. These mutants include a virus expressing no thymidine kinase $(ACV^r)$, a virus expressing thymidine kinase with altered substrate specificity $(IUdR^r)$, and a mutant expressing altered DNA polymerase $(PAA^r5)$. GCV, an agent activated by herpesvirus specific thymidine kinase, showed potent antiviral activity against the wild type HSV-1(KOS) and DNA polymerase mutant $(PAA^r5)$. The ACV-resistant mutants with thymidine kinase gene $(ACV^r\;and\;IUdR^r)$ were resistant to GCV. All tested wild type HSV-1 or ACV-resistant HSV-1 mutants did not display resistance to vidarabine (are-A). Combined GCV and ara-A showed potentiating synergistic antiviral activity against wild type KOS and $PAA^r5$, and showed subadditive combnined ativiral activity against thymidine kinase mutants. Combined GCV and ara-A more significantly inhibited the viral DNA synthesis in wild type KOS and $PAA^r5-infected$ cells to a greater extent than either agent alone, but the synergism was not determined in $ACV^r$ or $IUdR^r-infected$ cells. These data clearly indicate that combined GCV and ara-A therapy might be useful for the treatment of infections caused by wild type HSV-1 or ACV-resistant HSV-1 with DNA polymerase mutation. ACV-resistant viruses with the mutation in thymidine kinase gene are also, resistant to GCV, but susecptible to ara-A, indicating that ara-A would the drug of choice for the treatment of ACV-resistant HSV-1 which does not express thymidine kinase or expresses thymidine kinase with altered substrate specificity. While the synthesis of viral ${\alpha}-proteins$ of wild type HSV-1 was not affected by ACV, GCV, ara-A, or combined GCV and ara-A, the synthesis of ${\beta}-proteins$ was slightly but significantly increased at the later stage of viral infection by the antiviral agents. The synthesis of ${\gamma}-proteins$ of wild type HSV- 1 was significantly inhibited by ACV, GCV, ara-A, and combined GCV and ara-A. Combined GCV $(5-{\mu}M)$ and ara-A $(100-{\mu}M)$ also significantly altered the expression of viral ${\beta}-and$ ${\gamma}-proteins$, of which efffct was similar to that of GCV $(10-{\mu}M)$ alone. Although ACV at the concentration of $10-{\mu}M$ did not alter the expression of ${\alpha}-$, ${\beta}-$, and ${\gamma}-proteins$ of ACV-resistant $PAA^r5$, GCV and ara-A significantly alter the epression of ${\beta}-and$ ${\gamma}-proteins$, not ${\alpha}-protein$, as same manner as they altered the expression of those proteins in cells inffcted with wild type HSV-1. Combined GCV $(5-{\mu}M)$ and ara-A $(100-{\mu}M)$ altered the expression ${\beta}-and$ ${\gamma}-proteins$ in $PAA^r5$ infected cells, and the effect of combined regimen was comparable of that of GCV $(10-{\mu}M)$. These data indicate that the alteration in the expression of ${\beta}-and$ ${\gamma}-proteins$ in wild type HSV-1 or $PAA^r5$ infected cells could be more significantly affected by combined GCV and are-A than individual GCV or ara-A. In view of the fact that (a) viral ${\alpha}-$, ${\beta}-$, and ${\gamma}-proteins$ are synthesized in a cascade manner; (b) ${\beta}-proteins$ are essential for the synthesis of viral DNA; (c) the synthesis of ${\beta}-proteins$ are inhibited by ${\gamma}-proteins$; and (d) most ${\gamma}-proteins$ are made from the newly synthesized progeny virus, it is suggested that GCV and ara-A, alone or in combination, primarily inhibit the synthesis of viral DNA, and by doing so might exhibit their antiherpetic activity. The alteration in viral protein synthesis in the presence of tested antiviral agents could result from the alteration in viral DNA synthesis. From the present study, it can be concluded that (a) combined GCV and ara-A therapy would be beneficial for the control of inffctions caused by wild type HSV-1 or ACV-resistant DNA polymerase mutants; (b) the combined synergistic activity of GCV and ara-A is due to further decrease in the viral DNA by the combined regimen; (c) ara-A is the drug of choice for the infection caused by ACV-resistant HSV-1 with thymidine kinase mutation; and (d) the alteration in viral protein synthesis by GCV and ars-A, alone or in combination, is mostly due to the decreased synthesis of viral DAN.

  • PDF