• Title/Summary/Keyword: ARPE-19 cell

Search Result 19, Processing Time 0.03 seconds

Suppressors for Human Epidermal Growth Factor Receptor 2/4 (HER2/4): A New Family of Anti-Toxoplasmic Agents in ARPE-19 Cells

  • Kim, Yeong Hoon;Bhatt, Lokraj;Ahn, Hye-Jin;Yang, Zhaoshou;Lee, Won-Kyu;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.5
    • /
    • pp.491-503
    • /
    • 2017
  • The effects of tyrosine kinase inhibitors (TKIs) were evaluated on growth inhibition of intracellular Toxoplasma gondii in host ARPE-19 cells. The number of tachyzoites per parasitophorous vacuolar membrane (PVM) was counted after treatment with TKIs. T. gondii protein expression was assessed by western blot. Immunofluorescence assay was performed using Programmed Cell Death 4 (PDCD4) and T. gondii GRA3 antibodies. The TKIs were divided into 3 groups; non-epidermal growth factor receptor (non-EGFR), anti-human EGFR 2 (anti-HER2), and anti-HER2/4 TKIs, respectively. Group I TKIs (nintedanib, AZD9291, and sunitinib) were unable to inhibit proliferation without destroying host cells. Group II TKIs (lapatinib, gefitinib, erlotinib, and AG1478) inhibited proliferation up to 98% equivalent to control pyrimethamine ($5{\mu}M$) at $20{\mu}M$ and higher, without affecting host cells. Group III TKIs (neratinib, dacomitinib, afatinib, and pelitinib) inhibited proliferation up to 98% equivalent to pyrimethamine at $1-5{\mu}M$, but host cells were destroyed at $10-20{\mu}M$. In Group I, TgHSP90 and SAG1 inhibitions were weak, and GRA3 expression was moderately inhibited. In Group II, TgHSP90 and SAG1 expressions seemed to be slightly enhanced, while GRA3 showed none to mild inhibition; however, AG1478 inhibited all proteins moderately. Protein expression was blocked in Group III, comparable to pyrimethamine. PDCD4 and GRA3 were well localized inside the nuclei in Group I, mildly disrupted in Group II, and were completely disrupted in Group III. This study suggests the possibility of a vital T. gondii TK having potential HER2/4 properties, thus anti-HER2/4 TKIs may inhibit intracellular parasite proliferation with minimal adverse effects on host cells.

Activation of Heme Oxygenase-1 by Mangiferin in Human Retinal Pigment Epithelial Cells Contributes to Blocking Oxidative Damage

  • Cheol Park;Hee-Jae Cha;Hyun Hwangbo;EunJin Bang;Heui-Soo Kim;Seok Joong Yun;Sung-Kwon Moon;Wun-Jae Kim;Gi-Young Kim;Seung-On Lee;Jung-Hyun Shim;Yung Hyun Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.329-340
    • /
    • 2024
  • Mangiferin is a kind of natural xanthone glycosides and is known to have various pharmacological activities. However, since the beneficial efficacy of this compound has not been reported in retinal pigment epithelial (RPE) cells, this study aimed to evaluate whether mangiferin could protect human RPE ARPE-19 cells from oxidative injury mimicked by hydrogen peroxide (H2O2). The results showed that mangiferin attenuated H2O2-induced cell viability reduction and DNA damage, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione (GSH). Mangiferin also antagonized H2O2-induced inhibition of the expression and activity of antioxidant enzymes such as manganese superoxide dismutase and GSH peroxidase, which was associated with inhibition of mitochondrial ROS production. In addition, mangiferin protected ARPE-19 cells from H2O2-induced apoptosis by increasing the Bcl-2/Bax ratio, decreasing caspase-3 activation, and blocking poly(ADP-ribose) polymerase cleavage. Moreover, mangiferin suppressed the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Furthermore, mangiferin increased the expression and activity of heme oxygenase-1 (HO-1) and nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the inhibition of ROS production, cytoprotective and anti-apoptotic effects of mangiferin were significantly attenuated by the HO-1 inhibitor, indicating that mangiferin promoted Nrf2-mediated HO-1 activity to prevent ARPE-19 cells from oxidative injury. The results of this study suggest that mangiferin, as an Nrf2 activator, has potent ROS scavenging activity and may have the potential to protect oxidative stress-mediated ocular diseases.

Enhancement of UV-induced nucleotide excision repair activity upon forskolin treatment is cell growth-dependent

  • Lee, Jeong-Min;Park, Jeong-Min;Kang, Tae-Hong
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.566-571
    • /
    • 2016
  • Forskolin (FSK), an adenylyl cyclase activator, has recently been shown to enhance nucleotide excision repair (NER) upon UV exposure. However, our study revealed that this effect was detected in human skin epithelial ARPE19 cells only in growing cells, but not in non-cycling cells. When the cells were grown at low density (70% confluence), FSK was capable of stimulating cAMP responsive element binding (CREB) phosphorylation, a marker for FSK-stimulated PKA activation, and resulted in a significant increase of NER activity compared to control treatment. However, cells grown under 100% confluent conditions showed neither FSK-induced CREB phosphorylation nor the resulting NER enhancement. These findings indicate that cellular growth is critical for FSK-induced NER enhancement and suggest that cellular growth conditions should be considered as a variable while evaluating a reagent's pharmacotherapeutic efficacy.

Centella asiatica extract prevents visual impairment by promoting the production of rhodopsin in the retina

  • Park, Dae Won;Jeon, Hyelin;So, Rina;Kang, Se Chan
    • Nutrition Research and Practice
    • /
    • v.14 no.3
    • /
    • pp.203-217
    • /
    • 2020
  • BACKGROUND/OBJECTIVE: Centella asiatica, also known as Gotu kola, is a tropical medicinal plant native to Madagascar, Southeast Asia, and South Africa. It is well known to have biological activities, including wound healing, anti-inflammatory, antidiabetic, cytotoxic, and antioxidant effects. The purpose of this study was to determine the efficacy of extracts of C. asiatica against age-related eye degeneration and to examine their physiological activities. MATERIALS/METHODS: To determine the effects of CA-HE50 (C. asiatica 50% EtOH extract) on retinal pigment cells, we assessed the cytotoxicity of CoCl2 and oxidized-A2E in ARPE-19 cells and observed the protective effects of CA-HE50 against N-methyl-N-nitrosourea (MNU)-induced retinal damage in C57BL/6 mice. In particular, we measured factors related to apoptosis and anti-oxidation and the protein levels of rhodopsin/opsin. We also measured glucose uptake to characterize glucose metabolism, a major factor in cell protection. RESULTS: Induction of cytotoxicity with CoCl2 and oxidized-A2E inhibited decreases in the viability of ARPE-19 cells when CA-HE50 was administered, and promoted glucose uptake under normal conditions (P < 0.05). In addition, CA-HE50 inhibited degeneration/apoptosis of the retina in the context of MNU-induced toxicity (P < 0.05). In particular, CA-HE50 at 200 mg/kg inhibited the cleavage of pro-caspase-3 and pro-poly (ADP-ribose)-polymerase and maintained the expressions of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 similar to normal control levels. Rhodopsin/opsin expression was maintained at a higher level than in normal controls. CONCLUSION: A series of experiments confirmed that CA-HE50 was effective for inhibiting or preventing age-related eye damage/degeneration. Based on these results, we believe it is worthwhile to develop drugs or functional foods related to age-related eye degeneration using CA-HE50.

Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway

  • Zhou, Wei;Quan, Juan-Hua;Gao, Fei-Fei;Ismail, Hassan Ahmed Hassan Ahmed;Lee, Young-Ha;Cha, Guang-Ho
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.2
    • /
    • pp.135-145
    • /
    • 2018
  • Due to the critical location and physiological activities of the retinal pigment epithelial (RPE) cell, it is constantly subjected to contact with various infectious agents and inflammatory mediators. However, little is known about the signaling events in RPE involved in Toxoplasma gondii infection and development. The aim of the study is to screen the host mRNA transcriptional change of 3 inflammation-related gene categories, PI3K/Akt pathway regulatory components, blood vessel development factors and ROS regulators, to prove that PI3K/Akt or mTOR signaling pathway play an essential role in regulating the selected inflammation-related genes. The selected genes include PH domain and leucine- rich-repeat protein phosphatases (PHLPP), casein kinase2 (CK2), vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), glutamate-cysteine ligase (GCL), glutathione S-transferase (GST), and NAD(P)H: quinone oxidoreductase (NQO1). Using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), we found that T. gondii up-regulates PHLPP2, $CK2{\beta}$, VEGF, GCL, GST and NQO1 gene expression levels, but down-regulates PHLPP1 and PEDF mRNA transcription levels. PI3K inhibition and mTOR inhibition by specific inhibitors showed that most of these host gene expression patterns were due to activation of PI3K/Akt or mTOR pathways with some exceptional cases. Taken together, our results reveal a new molecular mechanism of these gene expression change dependent on PI3K/Akt or mTOR pathways and highlight more systematical insight of how an intracellular T. gondii can manipulate host genes to avoid host defense.

Adhesion and Proliferation Behavior of Retinal Pigment Epithelial Cells on Hesperidin/PLGA Films (헤스페리딘/PLGA 필름에서 망막색소상피세포의 부착과 증식거동)

  • Lee, So Jin;Kang, Su Ji;Kim, Hye Yun;Lee, Jung Hwan;Kim, Eun Young;Kwon, Soon Yong;Chung, Jin Wha;Joo, Choun-Ki;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.24-30
    • /
    • 2014
  • Retinal pigment epithelium (RPE) plays an important role in maintaining the visual function and the degeneration of the RPE causes several retinal degeneration disease. In order to fabricate the suitable carrier for RPE transplantation, the hybrid poly(lactide-co-glycolide) (PLGA) film with hesperidin was prepared. Hesperidin has an anti-inflammatory and antioxidant characteristics. ARPE-19 was seeded on hesperidin/PLGA film and then, cell proliferation was determined by the MTT assay, and cell adhesion and cell morphology were confirmed by SEM. Also, RT-PCR was performed to confirm the expression of the specific genes, and AEC immunohistochemical staining was performed to determine the expression of RPE65. As a result, we confirmed that attachment, proliferation and phenotype maintenance of RPE cells were more excellent on hesperidin/PLGA film than PLGA film, thereby we were able to confirm the potential applications of hesperidin/PLGA film as tissue engineering carrier for regeneration of retina.

Rhynchosia volubilis Lour. and Beta vulgaris Modulate Extracts Regulate UV-Induced Retinal Pigment Epithelial Cell and Eye Damage in Mice (약콩, 비트 추출물의 자외선에 의한 망막 상피세포와 마우스의 눈 손상 조절 효능)

  • Kim, Ha Rim;Kim, Sol;Kim, Sang-Jun;Jeong, Seung-Il;Kim, Seon-Young
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.2
    • /
    • pp.131-138
    • /
    • 2020
  • Ultraviolet (UV)-induced damage plays a major role in ocular diseases, such as cataracts and retinal degeneration. UV irradiation can generate free radicals including reactive oxygen species (ROS), which are known to cause lipid peroxidation of cellular membranes. It has also been shown that UV can damage DNA directly and induce apoptosis. Rhynchosia volubilis Loureiro (the small black bean or yak-kong, RV) and Beta bulgaris (beet, BB) are used as health supplements. In this study, we explored the protective effects of RV and BB against UVA-induced damage in human pigment epithelial (ARPE-19) cells and in mice. RV and BB mixture and their effective constituents (cyanidin, delphidin, petunidin glycosides) improved cell viability and suppressed intracelluar ROS generation. Phosphorylation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), Erk1/2 was analyzed by immunoblotting. RV and BB mixture inhibited UVA-induced phosphorylation of p38 MAPK, JNK, Erk1/2 in APRE-19 cells. RV and BB treatment also showed protective effects on ocular damage in UVA-irradiated mice by increasing the levels of endogenous antioxidants such as superoxide dismutase and glutathione. RV and BB have the potential to be used in a range of ocular diseases and conditions, based on in vitro and in vivo study.

The Bcl-2/Bcl-xL Inhibitor ABT-263 Attenuates Retinal Degeneration by Selectively Inducing Apoptosis in Senescent Retinal Pigment Epithelial Cells

  • Wonseon Ryu;Chul-Woo Park;Junghoon Kim;Hyungwoo Lee;Hyewon Chung
    • Molecules and Cells
    • /
    • v.46 no.7
    • /
    • pp.420-429
    • /
    • 2023
  • Age-related macular degeneration (AMD) is one of the leading causes of blindness in elderly individuals. However, the currently used intravitreal injections of anti-vascular endothelial growth factor are invasive, and repetitive injections are also accompanied by a risk of intraocular infection. The pathogenic mechanism of AMD is still not completely understood, but a multifactorial mechanism that combines genetic predisposition and environmental factors, including cellular senescence, has been suggested. Cellular senescence refers to the accumulation of cells that stop dividing due to the presence of free radicals and DNA damage. Characteristics of senescent cells include nuclear hypertrophy, increased levels of cell cycle inhibitors such as p16 and p21, and resistance to apoptosis. Senolytic drugs remove senescent cells by targeting the main characteristics of these cells. One of the senolytic drugs, ABT-263, which inhibits the antiapoptotic functions of Bcl-2 and Bcl-xL, may be a new treatment for AMD patients because it targets senescent retinal pigment epithelium (RPE) cells. We proved that it selectively kills doxorubicin (Dox)-induced senescent ARPE-19 cells by activating apoptosis. By removing senescent cells, the expression of inflammatory cytokines was reduced, and the proliferation of the remaining cells was increased. When ABT-263 was orally administered to the mouse model of senescent RPE cells induced by Dox, we confirmed that senescent RPE cells were selectively removed and retinal degeneration was alleviated. Therefore, we suggest that ABT-263, which removes senescent RPE cells through its senolytic effect, has the potential to be the first orally administered senolytic drug for the treatment of AMD.

Comparison of the Cytoprotective Effects of Several Natural and Synthetic Compounds against Oxidative Stress in Human Retinal Pigment Epithelial Cells (인간 망막 색소상피 세포에서 산화적 스트레스에 대한 천연 및 합성 화합물들의 세포 보호 효과 비교)

  • Kim, Da Hye;Kim, Jeong-Hwan;Park, Seh-Kwang;Jeong, Ji-Won;Kim, Mi-Young;Nam, Soo-Wan;Lee, Hyesook;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.126-136
    • /
    • 2021
  • Oxidative stress causes injury to and degeneration of retinal pigment epithelial (RPE) cells. It is involved in several retinal disorders and leads to vision loss. In the present study, we investigated the effect of 14 kinds of natural compounds and two kinds of synthetic compounds on oxidative stress-induced cellular damage in human PRE cell lines (ARPE-19). From among them, we selected five kinds of compounds, including auranofin, FK-509, hemistepsin A, honokiol, and spermidine, which have inhibitory effects against hydrogen peroxide (H2O2)-mediated cytotoxicity. In addition, we found that four kinds of compounds (excluding auranofin) have protective effects on H2O2-induced mitochondrial dysfunction. Furthermore, the expression of phosphorylation of histone H2AX, a sensitive marker of DNA damage, was markedly up-regulated by H2O2, whereas it was notably down-regulated by FK-506, honokiol, and spermidine treatment. Meanwhile, five kinds of candidate compounds had no effect on H2O2-induced intracellular reactive oxygen species (ROS) levels, suggesting that the five candidate compounds have protective effects on oxidative stress-induced cellular damage through the ROS-independent pathway. Taken together, according to the results of H2O2-mediated cellular damage―such as cytotoxicity, apoptosis, mitochondrial dysfunction, and DNA damage―spermidine and FK-506 are the natural and synthetic compounds with the most protective effects against oxidative stress in RPE. Although further studies on the identification of the mechanism responsible are required, the results of the present study suggest the possibility of using spermidine and FK-506 to suppress the risk of retinal disorders.