• 제목/요약/키워드: ARIMA Models

검색결과 188건 처리시간 0.023초

ARIMA모형을 이용한 2011년 BDI의 예측 (Forecasts of the 2011-BDI Using the ARIMA-Type Models)

  • 모수원
    • 한국항만경제학회지
    • /
    • 제26권4호
    • /
    • pp.207-218
    • /
    • 2010
  • 2011년 세계경기는 그리 밝지 않은 것으로 전망되고 있다. 금년 11월 미국 정부가 6,000억 달러라는 천문학적 규모의 양적 완화를 발표하였음에도 별다른 효과를 기대하지 않을 정도로 세계경제에 대한 전망이 흐린 것이다. 글로벌 불균형과 환율문제에서의 국가간 갈등, 국제통화제도의 불안정 등도 경기회복을 더디게 하는 요인으로 지목되고 있다. 그런데 해운경기와 세계경제는 밀접한 연관성을 갖기 때문에 당연히 해운경기에 대한 전망이 밝지 않다. 본고는 2011년의 해운경기를 예측하기 위하여 단변량 모형인 4개의 ARIMA 모형과 6개의 개입ARIMA모형을 이용한다. 먼저 사후적 예측을 하여 10개의 모형의 RMSPE가 비교적 높을 뿐만 아니라 RW 모형의 그것보다 높아 동 모형을 이용한 예측이 부정확할 수 있음을 보인다. 그러나 이러한 점은 예측치에 대한 부정확을 의미하는 것이지 2011년 해운경기의 흐름에 대한 예측을 거부하는 것은 아니다. 사전적 예측을 통해 모형간 예측치가 비교적 큰 차이를 보이나 2011년 내내 침체 상태에 있거나 2011년 후반기에 침체상태로 접어든다는 것을 밝힌다. 해운업계에 어려운 시기가 될 수 있다는 것을 시사한다.

ARIMA모델 기반 생활 기상지수를 이용한 동·하계 최대 전력 수요 예측 알고리즘 개발 (Development of ARIMA-based Forecasting Algorithms using Meteorological Indices for Seasonal Peak Load)

  • 정현철;정재성;강병오
    • 전기학회논문지
    • /
    • 제67권10호
    • /
    • pp.1257-1264
    • /
    • 2018
  • This paper proposes Autoregressive Integrated Moving Average (ARIMA)-based forecasting algorithms using meteorological indices to predict seasonal peak load. First of all, this paper observes a seasonal pattern of the peak load that appears intensively in winter and summer, and generates ARIMA models to predict the peak load of summer and winter. In addition, this paper also proposes hybrid ARIMA-based models (ARIMA-Hybrid) using a discomfort index and a sensible temperature to enhance the conventional ARIMA model. To verify the proposed algorithm, both ARIMA and ARIMA-Hybrid models are developed based on peak load data obtained from 2006 to 2015 and their forecasting results are compared by using the peak load in 2016. The simulation result indicates that the proposed ARIMA-Hybrid models shows the relatively improved performance than the conventional ARIMA model.

시계열 모형을 활용한 일사량 예측 연구 (Solar radiation forecasting by time series models)

  • 서유민;손흥구;김삼용
    • 응용통계연구
    • /
    • 제31권6호
    • /
    • pp.785-799
    • /
    • 2018
  • 신재생에너지 산업이 발전함에 따라 태양광 발전에 대한 중요성이 확대되고 있다. 태양광 발전량을 정확히 예측하기 위해서는 일사량 예측이 필수적이다. 본 논문에서는 태양광 패널이 존재하는 청주와 광주 지역을 선정하여 기상포털에서 제공하는 시간별 기상 데이터를 수집하여 연구하였다. 일사량 예측을 위하여 시계열 모형인 ARIMA, ARIMAX, seasonal ARIMA, seasonal ARIMAX, ARIMA-GARCH, ARIMAX-GARCH, seasonal ARIMA-GARCH, seasonal ARIMAX-GARCH 모형을 비교하였다. 본 연구에서는 모형의 예측 성능을 비교하고자 mean absolute error와 root mean square error를 사용하였다. 모형들의 예측 성능 비교 결과 일사량만 고려하였을 때는 이분산 문제를 고려한 seasonal ARIMA-GARCH 모형이 우수한 성능을 나타냈고, 외생변수를 활용한 ARIMAX 모형으로 일사량 예측을 한 경우가 가장 좋은 예측력을 나타냈다.

상태 공간 모형에서의 모수 공간 제약 (Parameter Space Restriction in State-Space Model)

  • 전덕빈;김동수;박성호
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2006년도 추계학술대회
    • /
    • pp.169-172
    • /
    • 2006
  • Most studies using state-space models have been conducted under the assumption of independently distributed noises in measurement and state equation without adequate verification of the assumption. To avoid the improper use of state-space model, testing the assumption prior to the parameter estimation of state-space model is very important. The purpose of this paper is to investigate the general relationship between parameters of state-space models and those of ARIMA processes. Under the assumption, we derive restricted parameter spaces of ARIMA(p,0,p-1) models with mutually different AR roots where $p\;{\le}\;5$. In addition, the results of ARIMA(p,0,p-1) case can be expanded to more general ARIMA models, such as ARIMA(p-1,0,p-1), ARIMA(p-1,1,p-1), ARIMA(p,0,p-2) and ARIMA(p-1,1,p-2).

  • PDF

A Comparison of Seasonal Linear Models and Seasonal ARIMA Models for Forecasting Intra-Day Call Arrivals

  • Kim, Myung-Suk
    • Communications for Statistical Applications and Methods
    • /
    • 제18권2호
    • /
    • pp.237-244
    • /
    • 2011
  • In call forecasting literature, both the seasonal autoregressive integrated moving average(ARIMA) type models and seasonal linear models have been popularly suggested as competing models. However, their parallel comparison for the forecasting accuracy was not strictly investigated before. This study evaluates the accuracy of both the seasonal linear models and the seasonal ARIMA-type models when predicting intra-day call arrival rates using both real and simulated data. The seasonal linear models outperform the seasonal ARIMA-type models in both one-day-ahead and one-week-ahead call forecasting in our empirical study.

2012 BDI의 예측 (Forecasting the BDI during the Period of 2012)

  • 모수원
    • 한국항만경제학회지
    • /
    • 제27권4호
    • /
    • pp.1-11
    • /
    • 2011
  • 미국 신용등급 하락 이후 미국의 더블딥 우려와 유럽 재정위기가 세계 경제를 크게 뒤흔들고 있다. 미국의 재정적자가 심각한 수준에 도달하여 재정정책수단이 제대로 작용하지 못하고 유럽의 일부 국가에서도 재정위기 가능성이 상존하여 실물위기로 파급될 가능성이 높다. 이러한 점들은 세계경제가 내년에도 상당한 불확실성을 보일 것이라는 것을 의미한다. 세계경제에 대한 전망이 밝지 못한 가운데 해운경기는 세계 경기와 밀접한 관계가 있기 때문에 어두운 전망의 세계경제는 해운경기 역시 밝지 않을 것이라는 것을 쉽게 예측할 수 있다. 본고는 2012년의 해운경기를 예측하기 위하여 단변량 모형인 4개의 ARIMA 모형과 6개의 개입ARIMA모형을 이용한다. 먼저 사후적 예측을 하여 10개의 모형의 RMSPE가 비교적 높을 뿐만 아니라 일부 모형에서는 상당히 높아 ARIMA모형에 의한 예측이 어려움을 의미한다. 사전적 예측을 통해 모형들의 예측치가 큰 차이를 보이지 않으며 그러나 2012년 예측치가 모형 4개의 최대 2178-2320, 모형 6개의 최대 2071-2533에 불과하여 해운경기가 여전히 불황에서 벗어나기 어려울 것이라는 것을 보인다.

2010년 BDI의 예측 -ARIMA모형과 HP기법을 이용하여 (Forecasts of the BDI in 2010 -Using the ARIMA-Type Models and HP Filtering)

  • 모수원
    • 한국항만경제학회지
    • /
    • 제26권1호
    • /
    • pp.222-233
    • /
    • 2010
  • 해상운임의 변동은 해운업계에만 영향을 미치는데 그치지 않고 전후방 연쇄효과를 통해 조선업계를 비롯하여 경제 전반에 영향을 미친다. 따라서 해상운임의 움직임을 정확히 예측하는 것은 해운업계 뿐만 아니라 우리나라 경제에도 중요한 의미를 갖게 된다. 그러나 해상운임은 주가나 환율과 같이 다양한 요인에 의해 결정될 뿐만 아니라 최근 들어 운임의 변동성이 크게 커지는 추세이어서 예측에 상당한 어려움이 있다. 본고는 2010년의 BDI를 예측하기 위하여 가장 단순한 모형인 단변량모형인 ARIMA 모형, 개입ARIMA모형, HP 모형을 이용한다. 개입ARIMA 모형은 글로벌 금융위기와 중국효과가 미친 효과를 분석하기 위한 것이다. ARIMA모형은 2010년 말에 4,230-4.690에 도달할 것으로, 개입ARIMA모형은 낙관적인 경우 4,460-4,900선에, 비관적일 경우 2,820-2,940선이 될 것으로 예상하여 모형별로 상당한 차이를 드러내고 있다. 그런데 HP 모형에 의한 예측치는 기준 역할을 하므로 HP모형에 의한 2010년 말 예측치 3,500 포인트를 감안하면 2010년 12월에 2,820-4,230의 범주에 도달할 것으로 예측된다. 2010년 12월 2,800 포인트는 해운업계에 어두운 그림자를 드리우는 예측치이다. 그러나 낙관적인 2010년 12월 4,000포인트는 2008년 BDI가 10,000 포인트를 넘어선 때를 기억하면 그리 높게 생각되지 않을 수 있으나 4,000 포인트 이상의 BDI는 해운관련업계에게 어느 정도의 안도감을 주고 재도약을 할 수 있는 기반을 제공할 수 있는 수준으로 판단된다.

ARIMA 추세의 비관측요인 모형과 미국 GDP에 대한 예측력 (UC Model with ARIMA Trend and Forecasting U.S. GDP)

  • 이영수
    • 국제지역연구
    • /
    • 제21권4호
    • /
    • pp.159-172
    • /
    • 2017
  • 비관측요인(unobserved-component)모형을 이용한 GDP의 추세-순환요인 분해에서, 통상적으로 추세는 확률보행 과정을 갖는 것으로 가정된다. 본 연구는 추세를 ARIMA 과정으로 표현하는 경우, GDP 변동에서 갖는 추세요인의 의미가 어떻게 달라지는가를 살펴보고, GDP에 대한 예측력이 개선될 수 있는가의 여부를 미국의 데이터를 이용하여 실증적으로 분석하였다. 모형은 GDP만의 단일변수모형과 물가를 포함하는 2변수모형의 두 가지를 고려하여 설정하였으며, 모형 추정은 비관측요인모형을 상태-공간모형으로 전환한 후 칼만 필터(Kalman filter)를 이용한 최대우도추정법을 사용하였다. GDP에 대한 예측은 축차적 추정(recursive estimation)을 이용한 동적 표본외예측(dynamic out-of-sample) 방식을 사용하였으며, 예측력 비교결과에 대한 검정은 Diebold-Mariano 검정을 이용하였다. 분석 결과는 첫째, 모형의 추정결과에서 ARIMA 추세의 계수가 통계적으로 유의적인 값을 가지며, 둘째, ARIMA 추세 모형이 확률보행 추세 모형보다 GDP 변동의 분산 및 자기 상관성(autocorrelation)을 보다 잘 설명하며, 셋째, 예측력에서 단일변수보다는 2변수모형의 예측력이 그리고 확률보행 추세보다는 ARIMA 추세를 갖는 모형의 예측력이 통계적으로 유의하게 높은 것으로 나타났다. 이러한 결과들은 GDP 추세-순환 요인 분해에서 추세를 ARIMA 과정으로 표현하는 것이 보다 타당하다는 것을 시사하고 있다.

Performance Evaluation of Time Series Models using Short-Term Air Passenger Data

  • Park, W.G.;Kim, S.
    • 응용통계연구
    • /
    • 제25권6호
    • /
    • pp.917-923
    • /
    • 2012
  • We perform a comparison of time series models that include seasonal ARIMA, Fractional ARIMA, and Holt-Winters models; in addition, we also consider hourly and daily air passenger data. The results of the performance evaluation of the models show that the Holt-Winters methods outperforms other models in terms of MAPE.

계수형 시계열 모형을 위한 자동화 차수 선택 알고리즘 (Automatic order selection procedure for count time series models)

  • 지윤미;성병찬
    • 응용통계연구
    • /
    • 제33권2호
    • /
    • pp.147-160
    • /
    • 2020
  • 본 논문은 시계열 일반화 선형 모형의 하나인 계수형 시계열 모형에서 중요한 역할을 하는 과거 관측값과 조건부 평균값의 차수를 자동으로 결정하는 알고리즘을 연구한다. 본 알고리즘은 ARIMA 모형의 차수를 기반으로 시계열 일반화 선형 모형의 차수 후보군을 만들고, 차수 후보군의 조합을 이용하여 정보량 기준으로 최종 모형으로 선택한다. 제안된 알고리즘을 평가하기 위하여, 내재적 모형 및 내재적 시계열의 종류에 따른 시뮬레이션 및 실증 분석을 수행하고 예측력을 ARIMA 모형과 비교한다. 예측 성능 평가 결과, 계수형 시계열 분석에서 ARIMA 모형에 비해 시계열 일반화 선형 모형의 예측 성능이 우수함을 확인할 수 있다. 또한 실증분석으로서, 살인사건 발생 건수의 예측결과 ARIMA 모형보다 중기 및 장기 예측에서 우수한 성능을 나타내는 것을 확인할 수 있다.