• Title/Summary/Keyword: ARIA 알고리듬

Search Result 14, Processing Time 0.017 seconds

Security Method on the Multi-modal Biometrics Data (암호이론을 이용한 다중생체데이터 전송상의 보안)

  • Go Hyeon-Ju;Yu Byeong-Jin;Kim Yong-Min;Jeon Myeong-Geun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.183-186
    • /
    • 2006
  • 생체인식은 정보처리시스템에 있어서 네트웍 보안, 시스템 보안, 어플리케이션 보안 등에 사용되는 개인인증 및 확인을 위한 하나의 기법으로 볼 수 있으며, 개인정보를 포함한 데이터의 보호를 위해서 본인이나 승인된 사용자만이 네트웍이나 물리적 접근 등을 통하여 접근하고자 하는 것이다. 본 논문에서는 얼굴인식과 홍채인식 시스템을 융합한 다중생체인식 시스템을 구현하였으며, 다중생체인식 시스템에서 구현된 생체데이터를 안전하게 전송할 수 있는 방법으로 블록 암호 알고리듬 ARIA를 침입에 대한 보안 방법으로 제안하였다. 이에 다중생체 특징벡터를 128비트의 블록 크기를 이용하여 암호화 하였으며, 생체 특징벡터를 이용하여 128비트의 키로 사용하였다.

  • PDF

A Unified ARIA-AES Cryptographic Processor Supporting Four Modes of Operation and 128/256-bit Key Lengths (4가지 운영모드와 128/256-비트 키 길이를 지원하는 ARIA-AES 통합 암호 프로세서)

  • Kim, Ki-Bbeum;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.795-803
    • /
    • 2017
  • This paper describes a dual-standard cryptographic processor that efficiently integrates two block ciphers ARIA and AES into a unified hardware. The ARIA-AES crypto-processor was designed to support 128-b and 256-b key sizes, as well as four modes of operation including ECB, CBC, OFB, and CTR. Based on the common characteristics of ARIA and AES algorithms, our design was optimized by sharing hardware resources in substitution layer and in diffusion layer. It has on-the-fly key scheduler to process consecutive blocks of plaintext/ciphertext without reloading key. The ARIA-AES crypto-processor that was implemented with a $0.18{\mu}m$ CMOS cell library occupies 54,658 gate equivalents (GEs), and it can operate up to 95 MHz clock frequency. The estimated throughputs at 80 MHz clock frequency are 787 Mbps, 602 Mbps for ARIA with key size of 128-b, 256-b, respectively. In AES mode, it has throughputs of 930 Mbps, 682 Mbps for key size of 128-b, 256-b, respectively. The dual-standard crypto-processor was verified by FPGA implementation using Virtex5 device.

Differential Fault Analysis on AES by Recovering of Intermediate Ciphertext (중간 암호문 복구 방법을 이용한 AES 차분오류공격)

  • Baek, Yi-Roo;Gil, Kwang-Eun;Park, Jea-Hoon;Moon, Sang-Jae;Ha, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.5
    • /
    • pp.167-174
    • /
    • 2009
  • Recently, Li et al. proposed a new differential fault analysis(DFA) attack on the block cipher ARIA using about 45 ciphertexts. In this paper, we apply their DFA skill on AES and improve attack method and its analysis. The basic idea of our DFA method is that we recover intermediate ciphertexts in last round using final faulty ciphertexts and find out last round secret key. In addition, we present detail DFA procedure on AES and analysis of complexity. Furthermore computer simulation result shows that we can recover its 128-bit secret key by introducing a correct ciphertext and 2 faulty ciphertexts.

A Security SoC supporting ECC based Public-Key Security Protocols (ECC 기반의 공개키 보안 프로토콜을 지원하는 보안 SoC)

  • Kim, Dong-Seong;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1470-1476
    • /
    • 2020
  • This paper describes a design of a lightweight security system-on-chip (SoC) suitable for the implementation of security protocols for IoT and mobile devices. The security SoC using Cortex-M0 as a CPU integrates hardware crypto engines including an elliptic curve cryptography (ECC) core, a SHA3 hash core, an ARIA-AES block cipher core and a true random number generator (TRNG) core. The ECC core was designed to support twenty elliptic curves over both prime field and binary field defined in the SEC2, and was based on a word-based Montgomery multiplier in which the partial product generations/additions and modular reductions are processed in a sub-pipelining manner. The H/W-S/W co-operation for elliptic curve digital signature algorithm (EC-DSA) protocol was demonstrated by implementing the security SoC on a Cyclone-5 FPGA device. The security SoC, synthesized with a 65-nm CMOS cell library, occupies 193,312 gate equivalents (GEs) and 84 kbytes of RAM.