• Title/Summary/Keyword: APR+

Search Result 783, Processing Time 0.028 seconds

Isolation of 2 Bacillus Strains with Strong Fibrinolytic Activities from Kimchi

  • Yao, Zhuang;Meng, Yu;Le, Huong Giang;Lee, Se Jin;Jeon, Hye Sung;Yoo, Ji Yeon;Afifah, Diana Nur;Kim, Jeong Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.439-446
    • /
    • 2020
  • Two Bacillus strains, K3 and K208, both demonstrating strong fibrinolytic activities were isolated from Kimchi, a traditional Korean preparation of fermented vegetables. Isolates were subjected to various molecular biology based identification methods including RAPD-PCR and identified as B. subtilis and B. velezensis, respectively. Tryptic soy broth (TSB) was found to best maintain both the growth and the fibrinolytic activity of these strains. Culture supernatants were analyzed by SDS-PAGE and fibrin zymography, and the results indicate that a 40 and 27 kDa band seem to be responsible for the fibrinolytic activities of these two isolates and the 27 kDa band was subsequently identified as the mature form of AprE, the major fibrinolytic enzyme. Thus the aprE genes were cloned and the translated amino acid sequences demonstrated 99.3% identity with each other, and 86.5% identity with BsfA, a fibrinolytic enzyme from B. subtilis ZA400 also isolated from Kimchi, and AprE2, a fibrinolytic enzyme from B. subtilis CH3-5 isolated from Cheonggukjang, a traditional Korean fermented soy. Given this B. subtilis K3 and B. velezensis K208 may be promising starter cultures in the production of fermented foods.

Analysis of LBLOCA of APR1400 with 3D RPV model using TRACE

  • Yunseok Lee;Youngjae Lee;Ae Ju Chung;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1651-1664
    • /
    • 2023
  • It is very difficult to capture the multi-dimensional phenomena such as asymmetric flow and temperature distributions with the one-dimensional (1D) model, obviously, due to its inherent limitation. In order to overcome such a limitation of the 1D representation, many state-of-the-art system codes have equipped a three-dimensional (3D) component for multi-dimensional analysis capability. In this study, a standard multi-dimensional analysis model of APR1400 (Advanced Power Reactor 1400) has been developed using TRACE (TRAC/RELAP Advanced Computational Engine). The entire reactor pressure vessel (RPV) of APR1400 has been modeled using a single 3D component. The fuels in the reactor core have been described with detailed and coarse representations, respectively, to figure out the impact of the fuel description. Using both 3D RPV models, a comparative analysis has been performed postulating a double-ended guillotine break at a cold leg. Based on the results of comparative analysis, it is revealed that both models show no significant difference in general plant behavior and the model with coarse fuel model could be used for faster transient analysis without reactor kinetics coupling. The analysis indicates that the asymmetric temperature and flow distributions are captured during the transient, and such nonuniform distributions contribute to asymmetric quenching behaviors during blowdown and reflood phases. Such asymmetries are directly connected to the figure of merits in the LBLOCA analysis. Therefore, it is recommended to employ a multi-dimensional RPV model with a detailed fuel description for a realistic safety analysis with the consideration of the spatial configuration of the reactor core.

LEU+ loaded APR1400 using accident tolerant fuel cladding for 24-month two-batch fuel management scheme

  • Husam Khalefih;Taesuk Oh;Yunseok Jeong;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2578-2590
    • /
    • 2023
  • In this work, a 24-month two-batch fuel management strategy for the APR1400 using LEU + has been investigated, where enrichments of 5.9 and 5.2 w/o are utilized in lieu of the conventional 4-5 w/o UO2 fuel. In addition, an Accident Tolerant Fuel (ATF) clad based on the swaging technology is applied to APR1400 fuel assemblies. In this special ATF clad design, both outer and inner SS316 layers protect the conventional zircaloy clad. Erbia (Er2O3) is introduced as a burnable absorber with two-fold goals to lower the critical boron concentration in the long-cycle LEU + loaded core as well as to handle the LEU + fuel in the existing front-end fuel facilities without renewing the license. Two types of fuel assemblies with different loading of gadolinia (Gd2O3) are considered to control both the reactivity and the core radial power distribution. The erbia burnable absorber is uniformly admixed with UO2 in all fuel pins except for the gadolinia-bearing ones. In this study, two core designs were devised with different erbia loading, and core performance and safety parameters were evaluated for each case in comparison with a core design without any burnable absorbers. The core analysis was done using the two-step method. First, cross-sections are generated by the SERPENT 2 Monte Carlo code, and the 3-D neutronic analysis is performed with an in-house multi-physics nodal code KANT.

Methodology for Developing Standard Schedule Activities for Nuclear Power Plant Construction through Probabilistic Coherence Analysis

  • kim, Woojoong
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.8-13
    • /
    • 2017
  • Nuclear power plant (NPP) constructions are large scale projects that are executed for several years, and schedule control utilizing various schedules is a critically important factor. Recently Korea independently developed the Advanced Power Reactor (APR) 1400 and is building nuclear facilities applying this new reactor type. The construction of Shin-Kori NPP (SKN) Unit 3, which adopted the APR1400, was completed and commercial operation has begun, while, SKN 4, Shin-Hanul NPP (SHN) Units 1&2, and SKN 5&6 are currently under construction. Prior to the development of the APR1400, Korea built 24 reactors and accumulated the schedule data of various reactor types which provided the foundation for schedule reduction to be possible. However, as there is no schedule development and review system established based on the standard schedule data (standard activities, durations, etc.) by reactor type, the process for developing the schedule for new builds is low in efficiency consuming much time and manpower. Also all construction data has been accumulated based on schedule activities. But because the connectivity of activities between projects is low, it is difficult to utilize such accumulated data (causes for schedule delay, causes for design changes, etc.) in new build projects. Due to such reasons, issues continue to arise in the process of developing standard schedule activities and a standard schedule for nuclear power plant construction. In order to develop a standard schedule for NPP construction, i) the development of an NPP standard schedule activity list, ii) development of the connection logic of NPP standard schedule activities, iii) development of NPP standard schedule activity resources and duration, and iv) integration of schedule data need to be performed. In this paper, an analysis was made on the coherence of schedule activity descriptions of existing NPPs by applying the probabilistic methodology on activities with low connectivity due to the utilization of the numbering system of four APR1400 reactors (SHN 1&2 and SKN 3&4).This study also describes the method for developing a standard schedule activity list and connectivity measures by extracting same and/or similar schedule activities.

  • PDF

Isolation and Characterization of the Smallest Bacteriophage P4 Derivatives Packaged into P4-Size Head in Bacteriophage P2-P4 System

  • Kim, Kyoung-Jin;Song, Jae-Ho
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.530-536
    • /
    • 2006
  • Bacteriophage P4, a satellite phage of coliphage P2, is a very useful experimental tool for the study of viral capsid assembly and cos-cleavage. For an in vitro cos-cleavage reaction study of the P2-P4 system, new shortened and selectable markers containing P4 derivative plasm ids were designed as a substrate molecules. They were constructed by swapping the non-essential segment of P4 DNA for either the kanamycin resistance (kmr) gene or the ampicillin resistance (apr) gene. The size of the genomes of the resulting markers were 82% (P4 ash8 delRI:: kmr) and 79% (P4 ash8 delRI:: apr) of the wild type P4 genome. To determine the lower limit of genome size that could be packaged into the small P4-size bead, these shortened P4 plasmids were converted to phage particles with infection of the helper phage P2. The conversion of plasmid P4 derivatives to bacteriophage particles was verified by the heat stability test and the burst size determination experiment. CsCl buoyant equilibrium density gradient experiments confirmed not only the genome size of the viable phage form of shortened P4 derivatives, but also their packaging into the small P4-size head. P4 ash8 delRI:: apr turned out to be the smallest P4 genome that can be packaged into P4-sized head.

Numerical Analysis of Flow Distribution in the Scaled-down APR+ Using Two-Equation Turbulence Models (2방정식 난류모델을 이용한 축소 APR+ 내부 유동분포 수치해석)

  • Lee, Gong Hee;Bang, Young Seok;Cheong, Ae Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.220-227
    • /
    • 2015
  • Complex thermal hydraulic characteristics exist inside the reactor because the reactor internals consist of fuel assembly, internal structures and so on. In this study, to examine the effect of Reynolds-Averaged Navier-Stokes (RANS)-based two-equation turbulence models in the analysis of flow distribution inside a 1/5 scaled-down APR+, simulation was performed using the commercial computational fluid dynamics software, ANSYS CFX R.13 and the predicted results were compared with the measured data. It was concluded that reactor internal flow pattern was locally different depending on the turbulence models. In addition, the prediction accuracy of k-${\varepsilon}$ model was superior to that of other two-equation turbulence models and this model predicted the relatively uniform distribution of core inlet flow rate.

A Systems Engineering Approach to Real-Time Data Communication Network for the APR1400

  • Ibrahim, Ahmad Salah;Jung, Jae-cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.9-17
    • /
    • 2017
  • Concept development of a real-time Field Programmable Gate Array (FPGA)-based switched Ethernet data communication network for the Man-Machine Interface System (MMIS) is presented in this paper. The proposed design discussed in this research is based on the systems engineering (SE) approach. The design methodology is effectively developed by defining the concept development stage of the life-cycle model consisting of three successive phases, which are developed and discussed: needs analysis; concept exploration; and concept definition. This life-cycle model is used to develop an FPGA-based time-triggered Ethernet (TTE) switched data communication network for the non-safety division of MMIS system to provide real-time data transfer from the safety control systems to the non-safety division of MMIS and between the non-safety systems including control, monitoring, and information display systems. The original IEEE standard 802.3 Ethernet networks were not typically designed or implemented for providing real-time data transmission, however implementing a network that provides both real-time and on-demand data transmission is achievable using the real-time Ethernet technology. To develop the design effectively, context diagrams are implied. Conformance to the stakeholders needs, system requirements, and relevant codes and standards together with utilizing the TTE technology are used to analyze, synthesize, and develop the MMIS non-safety data communication network of the APR1400 nuclear power plant.

Validation of Vibration and Stress Analysis Method for APR1400 Reactor Vessel Internals Comprehensive Vibration Assessment Program (APR1400 원자로내부구조물 종합진동평가프로그램 진동 및 응력해석 방법 검증)

  • Kim, Kyu Hyung;Ko, Do Young;Kim, Sung Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.308-314
    • /
    • 2013
  • The vibration and stress analysis program of comprehensive vibration assessment program(CVAP) is to theoretically verify the structural integrity of reactor vessel internals(RVI) and to provide the basis for selecting the locations monitored in measurement and inspection programs. This paper covers the applicability of the vibration and stress analysis method of APR1400 RVI CVAP. The analysis method was developed to use 3-dimensional detail hydraulic and structural models with ANSYS and CFX. To assess the method, the hydraulic loads and structural reponses of OPR1000 were predicted and compared with the measured data in the OPR1000 RVI CVAP. The results predicted with this method were close to the measured values considerably. Therefore, the analysis method was developed properly.

Cloning of aprE86-1 Gene Encoding a 27-kDa Mature Fibrinolytic Enzyme from Bacillus amyloliquefaciens CH86-1

  • Lee, Ae-Ran;Kim, Gyoung-Min;Kwon, Gun-Hee;Lee, Kang-Wook;Park, Jae-Yong;Chun, Ji-Yeon;Cha, Jae-Ho;Song, Young-Sun;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.370-374
    • /
    • 2010
  • A gene encoding the major secreted fibrinolytic protein of Bacillus amyloliquefaciens CH86-1 was cloned from genomic DNAs. DNA sequencing showed that the gene, aprE86-1, could direct the synthesis of a mature protein 275 amino acids in length after processing. When aprE86-1 was introduced into B. subtilis, a mature 27-kDa protein was produced as expected. The fibrinolytic activity of the B. subtilis transformant (TF) was higher than that of B. amyloliquefaciens CH86-1, showing the possibility of increasing the fibrinolytic activity of Bacillus strains through genetic engineering.

The effect of Sowing Dates on Major Agronomic Characteristics of Dendropanax morbifera $L_{EV}$ in Southern Area of Korea (남부 도서지역에서 황칠나무의 파종기에 따른 주요 형질변이)

  • 최성규;윤경원
    • Korean Journal of Plant Resources
    • /
    • v.14 no.1
    • /
    • pp.60-64
    • /
    • 2001
  • This study was carried out to investigate effects of sowing dates and method on major agronomic characteristics of Dendropanax morbifera $L_{EV}$. in southern area of Korea. The number of days from sowing to emergence was recognized liner negative correlation between sowing days. Dendropanax morbifera was sowed at seven different dates(from Dec.20 to Feb.20 at 30 days interval, from Mar, 1 to Apr. 15 at 15 days interval) in pot culture. In sowing date at Mar. 15, germination rate and early growth were good in pot. Dendropanax morbifera was sowed at five different dates(from Dec.20 to Apr.15 at 15 days interval) in field culture. In sowing date at Apr.15, germination rate and early growth were good in field culture.

  • PDF